Nickel oxides

Nickel forms a series of mixed oxide compounds which are commonly called nickelates. A nickelate is an anion containing nickel or a salt containing a nickelate anion, or a double compound containing nickel bound to oxygen and other elements. Nickel can be in different or even mixed oxidation states, ranging from +1, +2, +3 to +4. The anions can contain a single nickel ion, or multiple to form a cluster ion. The solid mixed oxide compounds are often ceramics, but can also be metallic. They have a variety of electrical and magnetic properties. Rare earth elements form a range of perovskite nickelates, in which the properties vary systematically as the rare earth element changes. Fine tuning of properties is achievable with mixtures of elements, applying stress or pressure, or varying the physical form.

Inorganic chemists call many compounds that contain nickel centred anions "nickelates". These include the chloronickelates, fluoronickelates, tetrabromonickelates, tetraiodonickelates, cyanonickelates, nitronickelates and other nickel-organic acid complexes such as oxalatonickelates.

Alkali nickelates

The lithium nickelates are of interest to researchers as cathodes in lithium cells, as these substance can hold a variable amount of lithium, with the nickel varying in oxidation state.[1]

Rare earth nickelates

Rare earth nickelates with nickel in a +1 oxidation state have an electronic configuration to same as for cuprates and so are of interest to high-temperature superconductor researchers. Other rare earth nickelates can function as fuel cell catalysts. The ability to switch between an insulating and a conducting state in some of these materials is of interest in the development of new transistors, that have higher on to off current ratios.[2]

The rare earth nickelates were first made by Demazeau et al. in 1971, by heating a mixture of oxides under high pressure oxygen, or potassium perchlorate. However they were unable to make the cerium, praseodymium, and terbium nickelates.[3] This may be because Ce, Pr and Tb oxidises to 4+ions in those conditions.[4] For two decades after that no one paid attention to them.[4] Many rare earth nickelates have the Ruddlesden-Popper phase structure.

List of oxides

formula name other names structure Remarks references
LiNiO2 Lithium Nickelate rhombohedral a=2.88 Å c=14.2 Å density=4.78 / 4.81 [5]
Li2NiO3 monoclinic C2/m a=4.898 Å, b=8.449 Å, c=4.9692 Å, β=109.02°, V=194.60 Å3 Nickel in +4 state [1]
NaNiO2 sodium nickelate monoclinic a.5.33 Å b=2.86 Å c=5.59 Å β=110°30′ Z=2 density=4.74 ; over 220 °C; rhombohedral a=2.96 Å b=15.77 Å Carbon dissolved in the molten salt can precipitate diamond. [5][6]
KNiO2 potassium nickelate [5][7]
SrTiNiO3 Strontium titanate nickelate STN [8]
YNiO3 yttrium nickelate monoclinic P21/n ; orthorhombic a = 5.516 Å, b = 7.419 Å, c = 5.178 Å V=211.9 Å3 Z=4 density=6.13 insulator changes to metal under pressure [9][10]
Y2BaNiO5 chain nickelate Orthorhombic Immm a=3.7589 b=5.7604 c=11.3311 [11][12]
2H-AgNiO2 hexagonal P63/mmc a=2.93653 Å, b=2.93653 Å, c=12.2369 Å, V=91.384 Å3, Z=2, density=7.216 g/cm3 Ni in +3 state [13]
3R-AgNiO2 trigonal R32/m a=2.9390 Å, c=18.3700 Å, Ni in +3 state [13][14]
Ag2NiO2 silveroxonickelate trigonal R32/m a=2.926 Å, c=24.0888 Å, lustrous black solid, stable in air; Ni3+ and subvalent Ag2+ [14]
Ag3Ni2O4 hexagonal P63/mmc a=2.9331 Å, b=2.9331 Å, c=28.31 Å, V=210.9 Å3, Z=2, density=7.951 g/cm3 electric conductor [15]
BaNiO2 orthorhombic a=5.73 Å b=9.2 Å c=4.73 Å V=249 Å3 Z=4 black [16]
BaNiO3 hexagonal a=5.580 Å c=4.832 Å V=130.4Å3 Z=2 black powder dec 730 °C N-type semiconductor; decompose in acid [16][17]
Ba2Ni2O5 hexagonal a=5.72 c=4.30 density=6.4 black needles melt 1200 °C [16][17]
LaNiO2 Lanthanum nickelite a=3.959 c=3.375 Ni in +1 state [18]
LaNiO3 lanthanum nickelate a = 5.4827 Å, b = 5.4827 Å, c = 3.2726 Å, γ=120°, V=345.5 Z=6 density=7.08 metallic, no insulating transition polar metal [19]
La2NiO4 LN tetragonal a = 3.86 Å, b = 3.86 Å, c = 12.67 Å V=188.8 Å3, Z=2, density=7.05 [20][21]
La3Ni2O6 tetragonal a = 3.968 Å , c = 19.32 Å [20]
La3Ni2O7 a = 5.3961 Å, b = 5.4498 Å, c = 20.522 Å V=603.5 Z=4, density=7.1 [20][22]
La4Ni3O8 antiferromagnetic below 105K, mixed valence I and II [20][23]
La4Ni3O10 [23]
La2−xSrxNiO4 LSN a varies from 3.86 to 3.81 as x changes from 0 to 0.5, then ≈ 3.81; c ≈ 12.7 for x≤0.8, the it falls to 12.4 at x=1.2 polarization specific metal [24]
CeNiO3 Cerium Nickelate [25]
PrNiO2 [20]
PrNiO3 perovskite metallic insulator transition=130K [26]
Pr4Ni3O8 [20]
Pr2BaNiO5 chain nickelate Orthorhombic [11]
NdNiO3 neodymium nickelate perovskite orthorhombic Pbnm a=5.38712 Å, b=5.38267 Å, c=7.60940 Å metallic insulator transition=200K [10][26]
NdNiO2 orthorhombic a = 5.402 Å, b = 7.608 Å, c = 5.377 Å V=221.0 Å3 density=7.54 [20][27][28]
Nd4Ni3O8 orthorhombic a = 3.9171 Å, b = 3.9171 Å, c = 25.307 Å V=388.3 Å3 Z=2 density=7.54 [20][29]
Nd2NiO4 Cmca a = 5.383 Å, b = 12.342 Å, c = 5.445 Å, V=361.7 Å3 density=7.55 [30]
Nd2BaNiO5 chain nickelate Orthorhombic Immm a=2.8268 Å b=5.9272 Å c=11.651 Å [11][12]
SmNiO3 samarium nickelate SNO perovskite Pnma a = 5.431 Å, b = 7.568 Å, c = 5.336 Å V=219.3 Å Z=4 density=7.79 metallic insulator transition=400K [26][31]
Sm1.5Sr0.5NiO4 SSNO orthorhombic Bmab giant dielectric constant 100,000 [32]
EuNiO3 europium nickelate perovskite orthorhombic a = 5.466 Å, b = 7.542 Å, c = 5.293 Å V=218.2 Å3 Z=4 density=7.87 metallic insulator transition=460K [26]
GdNiO3 gadolinium nickelate perovskite Orthorhombic a = 0.5492 Å, b = 0.7506 Å, c = 0.5258 Å V=216.8 Å3 Z=4 density=8.09 metallic insulator transition=510.9K [33]
Gd2NiO4 digadolinium nickelate Orthorhombic a = 3.851 Å, b = 3.851 Å, c = 6.8817 Å V=187.5 Å3 Z=2 density=7.75 [34]
Tb2BaNiO5 chain nickelate Orthorhombic [11]
DyNiO3 dysprosium nickelate perovskite orthorhombic a = 0.55 Å, b = 0.7445 Å, c = 0.5212 Å V=213.4 Z=4 density=8.38 metallic insulator transition=564.1K [26][33][35]
Dy2BaNiO5 chain nickelate Orthorhombic [11]
HoNiO3 holmium nickelate perovskite orthorhombic a = 3.96 Å, b = 3.96 Å, c = 5.04 Å V=212 Å3 Z=4 density=8.51 metallic insulator transition=560K [33]
Ho2BaNiO5 chain nickelate Orthorhombic Immm, a=3.764 Å, b=5.761 Å, c=11.336 Å [11][36]
ErNiO3 erbium nickelate perovskite orthorhombic a = 5.514 Å, b =7.381 Å, c = 5.16 V=201 Z=4 density=8.67 metallic insulator transition=580K [33][37]
Er2BaNiO5 chain nickelate Orthorhombic Immm a=3.7541 Å, b=5.7442 Å c=11.3019 Å V=243.71 Å3 Z=2 [11][12][38]
TmNiO3 thulium nickelate orthorhombic a = 5.495 Å, b = 7.375 Å, c = 5.149 Å V=208.7 Z=4 density=8.77 [39]
Tm2BaNiO5 thulium barium nickelate Orthorhombic low temperature Pnma a=12.2003 Å b=5.65845 Å c=6.9745 Å Z=4; high T: Immma=3.75128 b=5.7214 c=11.2456 Pnma form is brown Immm form is dark green [11][40]
YbNiO3 ytterbium nickelate Orthorhombic a = 5.496 Å, b = 7.353 Å, c = 5.131 Å Z=4 V=207.4 Å3 density=8.96 [41]
Yb2BaNiO5 ytterbium barium nickelate Orthorhombic Pnma a = 5.6423 Å, b = 6.9545 Å, c = 12.1583 Å V=477.1 Z=4 density=8.66 Pnma form is brown [40]
LuNiO3 lutetium nickelate perovskite a = 5.499 Å, b = 7.356 Å, c = 5.117 Å V=207 Å3 Z=4 density=9.04 metallic insulator transition=600K [33][42]
Lu2BaNiO5 Orthorhombic Pnma [12]
TlNiO3 Thallium nickelate(III) perovskite a=5.2549 Å, b=5.3677 Å and c=7.5620 Å V=213.3Å3 [43]
PbNiO3
BiNiO3 bismuth nickelate(III) perovskite triclinic a=5.3852 b=5.6498 c=7.7078 Å α=91.9529° β=89.8097° γ=91.5411 V=234.29 Å3 Ni in +2 state, Bi in +3 and +5; stable 5–420K, antiferromagnetic [44][45]

References

  1. 1 2 Shinova, Elitza; Zhecheva, Ekaterina; Stoyanova, Radostina; Bromiley, Geoffrey D. (May 2005). "High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li1/3Ni2/3]O2". Journal of Solid State Chemistry. 178 (5): 1661–1669. doi:10.1016/j.jssc.2005.03.007. Retrieved 22 April 2016.
  2. Notman, Nina (December 2014). "Edging towards silicon-free transistors". Materials Today. 17 (10): 473. doi:10.1016/j.mattod.2014.10.034.
  3. Demazeau, Gérard; Marbeuf, Alain; Pouchard, Michel; Hagenmuller, Paul (November 1971). "Sur une série de composés oxygènes du nickel trivalent derivés de la perovskite". Journal of Solid State Chemistry (in French). 3 (4): 582–589. doi:10.1016/0022-4596(71)90105-8.
  4. 1 2 Alonso, J. A.; Martínez-Lope, M. J.; Casais, M. T.; Martínez, J. L.; Demazeau, G.; Largeteau, A.; García-Muñoz, J. L.; Muñoz, A.; Fernández-Díaz, M. T. (September 1999). "High-Pressure Preparation, Crystal Structure, Magnetic Properties, and Phase Transitions in GdNiO3 and DyNiO3 Perovskites". Chemistry of Materials. 11 (9): 2463–2469. doi:10.1021/cm991033k.
  5. 1 2 3 Dyer, Lawrence D.; Borie, Bernard S.; Smith, G. Pedro (March 1954). "Alkali Metal-Nickel Oxides of the Type MNiO2". Journal of the American Chemical Society. 76 (6): 1499–1503. doi:10.1021/ja01635a012.
  6. Komath, M.; Cherian, K. A.; Kulkarni, S. K.; Ray, A. (1994). "The role of sodium nickelate in the metastable recrystallization of diamond". Diamond & Related Materials. 4 (1): 20–25.
  7. Hofmann, K. A.; Hiendlmaier, H. (July 1906). "Sauerstoffübertragung durch brennendes Kalium". Berichte der deutschen chemischen Gesellschaft. 39 (3): 3184–3187. doi:10.1002/cber.190603903136.
  8. Lee, Ke-Jing; Wang, Li-Wen; Chiang, Te-Kung; Wang, Yeong-Her (26 October 2015). "Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory". Materials. 8 (10): 7191–7198. doi:10.3390/ma8105374.
  9. GarcÍA-MUÑOZ, J. L.; Amboage, M.; Hanfland, M.; Alonso, J. A.; MartÍNEZ-LOPE, M. J.; Mortimer, R. (March 2003). "Pressure-induced melting of charge-order in the self-doped mott insulator yttrium nickelate". High Pressure Research. 23 (1-2): 171–175. doi:10.1080/0895795031000114430.
  10. 1 2 Yamamoto, Susumu; Fujiwara, Takeo (June 2002). "Symmetry consideration and eg bands in NdNiO3 and YNiO3". Journal of Physics and Chemistry of Solids. 63 (6-8): 1347–1351. doi:10.1016/S0022-3697(02)00085-9.
  11. 1 2 3 4 5 6 7 8 Popova, M. N.; Romanov, E. A.; Klimin, S. A.; Chukalina, E. P.; Mill, B. V.; Dhalenne, G. (2005). "Stark Structure and Exchange Splittings of Nd3+ Ion Levels in Chain Nickelate Nd2BaNiO5" (PDF). Physics of the Solid State. 47 (8): 1497–1503. Retrieved 21 April 2016.
  12. 1 2 3 4 Alonso, J.A.; Rasines, I.; Rodriguez-Carvajal, J.; Torrance, J.B. (April 1994). "Hole and Electron Doping of R2BaNiO5 (R = Rare Earths)". Journal of Solid State Chemistry. 109 (2): 231–240. doi:10.1006/jssc.1994.1098.
  13. 1 2 Sörgel, Timo; Jansen, Martin (November 2005). "Eine neue, hexagonale Modifikation von AgNiO2" [A New Hexagonal Modification of AgNiO2]. Zeitschrift für anorganische und allgemeine Chemie (in German). 631 (15): 2970–2972. doi:10.1002/zaac.200500295.
  14. 1 2 Schreyer, Martin; Jansen, Martin (15 February 2002). "Synthesis and Characterization of Ag2NiO2 Showing an Uncommon Charge Distribution". Angewandte Chemie. 114 (4): 665–668. doi:10.1002/1521-3757(20020215)114:4<665::AID-ANGE665>3.0.CO;2-Z.
  15. Sörgel, Timo; Jansen, Martin (January 2007). "Ag3Ni2O4—A new stage-2 intercalation compound of 2H–AgNiO2 and physical properties of 2H–AgNiO2 above ambient temperature". Journal of Solid State Chemistry. 180 (1): 8–15. doi:10.1016/j.jssc.2006.08.033. available on ScienceDirect
  16. 1 2 3 Lander, J. J. (1 March 1951). "The crystal structures of NiO.3BaO, NiO.BaO, BaNiO3 and intermediate phases with composition near Ba2 Ni2 O5 ; with a note on NiO". Acta Crystallographica. 4 (2): 148–156. doi:10.1107/S0365110X51000441.
  17. 1 2 Lander, J. J.; Wooten, L. A. (June 1951). "Barium-Nickel Oxides with Tri- and Tetravalent Nickel". Journal of the American Chemical Society. 73 (6): 2452–2454. doi:10.1021/ja01150a013.
  18. Crespin, M.; Isnard, O.; Dubois, F.; Choisnet, J.; Odier, P. (April 2005). "LaNiO2: Synthesis and structural characterization". Journal of Solid State Chemistry. 178 (4): 1326–1334. doi:10.1016/j.jssc.2005.01.023.
  19. "Atom Work Inorganic Material Database". Retrieved 23 April 2016.
  20. 1 2 3 4 5 6 7 8 Poltavets, Viktor V.; Lokshin, Konstantin A.; Dikmen, Sibel; Croft, Mark; Egami, Takeshi; Greenblatt, Martha (July 2006). "La 2Ni2O6 : A New Double T'-type Nickelate with Infinite Ni 1+/2+O2 Layers". Journal of the American Chemical Society. 128 (28): 9050–9051. doi:10.1021/ja063031o.
  21. "La2NiO4 in K2NiF4 structure". Retrieved 23 April 2016.
  22. "Details of Selected Material Inorganic Materials Database". Retrieved 23 April 2016.
  23. 1 2 Poltavets, Viktor V. (1 January 2010). "Bulk Magnetic Order in a Two-Dimensional" (PDF). Physical Review Letters. 104 (20). doi:10.1103/PhysRevLett.104.206403. Retrieved 21 April 2016.
  24. Sreedhar, K.; Rao, C.N.R. (October 1990). "Electrical and magnetic properties of La2−xSrxNiO4: A tentative phase diagram". Materials Research Bulletin. 25 (10): 1235–1242. doi:10.1016/0025-5408(90)90079-H.
  25. Arockiam, S. Ignatius; Regis, A. Peter Pascal; Berchmans, L. John (April–June 2012). "Synthesis and Characterisation of Nano crystalline Cerium Nickelate (CeNiO3) Powders using Low Temperature Molten Salt Technique" (PDF). International Journal of ChemTech Research. 4 (2): 798–804. Retrieved 23 April 2016.
  26. 1 2 3 4 5 Lafez, P.; Ruello, P.; Edely, M. "Elecgtrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016.
  27. "details of selected material". Atom Work. Retrieved 23 April 2016.
  28. García-Muñoz, J. L.; Aranda, M. A. G.; Alonso, J. A.; Martínez-Lope, M. J. (28 April 2009). "Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3". Physical Review B. 79 (13). doi:10.1103/PhysRevB.79.134432.
  29. "details of selected material". Atom Work. Retrieved 23 April 2016.
  30. "details of selected material". Atom Work. Retrieved 23 April 2016.
  31. "materials database 16998". Retrieved 23 April 2016.
  32. Liu, Xiao Qiang; Wu, Yong Jun; Chen, Xiang Ming; Zhu, Hai Yan (2009). "Temperature-stable giant dielectric response in orthorhombic samarium strontium nickelate ceramics". Journal of Applied Physics. 105 (5): 054104. doi:10.1063/1.3082034.
  33. 1 2 3 4 5 Gibert, Marta; Catalano, Sara; Fowlie, Jennifer. "Researchkelates". dqmp.unige.ch. Retrieved 21 April 2016.
  34. "Materials database". Retrieved 23 April 2016.
  35. "materials database". Retrieved 23 April 2016.
  36. García-Matres, E.; Rodríguez-Carvajal, J.; Martínez, J.L.; Salinas-Sánchez, A.; Sáez-Puche, R. (February 1993). "Magnetic structure of Ho2BaNiO5". Solid State Communications. 85 (7): 553–559. doi:10.1016/0038-1098(93)90306-8. Retrieved 23 April 2016.
  37. "materials database". Retrieved 23 April 2016.
  38. Alonso, J. A.; Amador, J.; Rasines, I.; Soubeyroux, J. L. (15 February 1991). "Er2BaNiO5: structure refinement using neutron powder diffraction data". Acta Crystallographica Section C. 47 (2): 249–251. doi:10.1107/S0108270190008873.
  39. "materials database". Retrieved 23 April 2016.
  40. 1 2 Salinas-Sánchez, A.; Sáez-Puche, R.; Rodríguez-Carvajal, J.; Martínez, J.L. (May 1991). "Structural characterization of R2BaNiO5 (R=Tm and Yb): polymorphism for R=Tm". Solid State Communications. 78 (6): 481–488. doi:10.1016/0038-1098(91)90361-X.
  41. "materials database". Retrieved 23 April 2016.
  42. "Materials database".
  43. Kim, Seung-Joo; Demazeau, Gérard; Alonso, José A.; Choy, Jin-Ho (2001). "High pressure synthesis and crystal structure of a new Ni(III) perovskite: TlNiO3". Journal of Materials Chemistry. 11 (2): 487–492. doi:10.1039/b007043m.
  44. Ishiwata, Shintaro; Azuma, Masaki; Takano, Mikio; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Kato, Kenichi (29 November 2002). "High pressure synthesis, crystal structure and physical properties of a new Ni(ii) perovskite BiNiO3". Journal of Materials Chemistry. 12 (12): 3733–3737. doi:10.1039/b206022a.
  45. Pugaczowa-Michalska, M.; Kaczkowski, J. (January 2017). "DFT+U studies of triclinic phase of BiNiO3 and La-substituted BiNiO3". Computational Materials Science. 126: 407–417. doi:10.1016/j.commatsci.2016.10.014.
This article is issued from Wikipedia - version of the 11/17/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.