2-Ethylanthraquinone

2-Ethylanthraquinone
Names
Other names
2-Ethyl-9,10-anthracenedione
Identifiers
84-51-5 N
3D model (Jmol) Interactive image
ChEMBL ChEMBL42355 YesY
ChemSpider 6514 YesY
ECHA InfoCard 100.001.396
EC Number 201-535-4
Properties
C16H12O2
Molar mass 236.27 g/mol
Appearance white to yellowish crystals or powder
Density 1.231g/cm3
Melting point 105 °C (221 °F; 378 K)
Boiling point 415.4 @ 760mmHg
Hazards
S-phrases S24 S25
Flash point 155.4 °C (311.7 °F; 428.5 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

2-Ethylanthraquinone is an organic compound that is a derivative of anthraquinone. It is pale yellow solid is used in the industrial production of hydrogen peroxide (H2O2).[1][2]

Production

2-Ethylanthraquinone is prepared from the reaction of phthalic anhydride and ethylbenzene:

C6H4(CO)2O + C6H5Et → C6H4(CO)2C6H3Et + H2O.

Both phthalic anhydride and ethylbenzene are readily available, being otherwise used in the large-scale production of plastics.

Uses

Hydrogen peroxide is produced industrially by the anthraquinone process which involves using 2-alkyl-9,10-anthraquinones for hydrogenation. Many derivatives of anthraquinone are used but 2-ethylanthraquinone is common because of its high selectivity. The hydrogenation of the unsubsituted ring can reach 90% selectivity by using 2-ethylanthraquinone. Hydrogenation follows the Riedl-Pfleiderer, or autoxidation, process:

The hydrogenation of 2-ethylanthraquinone is catalyzed by palladium. Hydrogenation produces both 2-ethylanthrahydroquinone and tetrahydroanthraquinone. The tetrahydro derivative of 2-alkylanthraquinone is easily hyrdrogenated but is more difficult to oxidize. The formation of the tetrahyrdo derivative can be suppressed through the selection of catalysts, solvents, and reaction conditions. Some suggested solvent mixtures are polyalkylated benzenes and alkyl phosphates or tetraalkyl ureas, trimethylbenzenes and alkylcyclohexanol esters, and methylnaphthalene and nonyl alcohols.

References

  1. Goor, G.; Glenneberg, J.; Jacobi, S. (2007). "Hydrogen Peroxide". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_443.pub2.
  2. Römpp CD 2006, Georg Thieme Verlag 2006
This article is issued from Wikipedia - version of the 8/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.