Wilhelm Wien

Wilhelm Wien
Born

Wilhelm Carl Werner Otto Fritz Franz Wien
(1864-01-13)13 January 1864
Gaffken near Fischhausen,

Province of Prussia
Died 30 August 1928(1928-08-30) (aged 64)
Munich, Germany
Nationality German
Fields Physics
Institutions University of Giessen
University of Würzburg
University of Munich
RWTH Aachen
Columbia University
Alma mater University of Göttingen
University of Berlin
Doctoral advisor Hermann von Helmholtz
Doctoral students Karl Hartmann
Gabriel Holtsmark
Eduard Rüchardt
Known for Blackbody radiation
Wien's displacement law
Notable awards Nobel Prize for Physics (1911)
Spouse Luise Mehler (1898)

Wilhelm Carl Werner Otto Fritz Franz Wien (German: [ˈviːn]; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.

He also formulated an expression for the black-body radiation which is correct in the photon-gas limit. His arguments were based on the notion of adiabatic invariance, and were instrumental for the formulation of quantum mechanics. Wien received the 1911 Nobel Prize for his work on heat radiation.

He was a cousin of Max Wien, inventor of the Wien bridge.

Biography

Early years

Wien was born at Gaffken near Fischhausen, Province of Prussia (now Primorsk, Russia) as the son of landowner Carl Wien. In 1866, his family moved to Drachstein near Rastenburg (Rastembork).

In 1879, Wien went to school in Rastenburg and from 1880-1882 he attended the city school of Heidelberg. In 1882 he attended the University of Göttingen and the University of Berlin. From 1883-85, he worked in the laboratory of Hermann von Helmholtz and, in 1886, he received his Ph.D. with a thesis on the diffraction of light upon metals and on the influence of various materials upon the color of refracted light. From 1896 to 1899, Wien lectured at RWTH Aachen University. In 1900 he went to the University of Würzburg and became successor of Wilhelm Conrad Röntgen.

Career

In 1896 Wien empirically determined a distribution law of blackbody radiation,[1] later named after him: Wien's law. Max Planck, who was a colleague of Wien's, did not believe in empirical laws, so using electromagnetism and thermodynamics, he proposed a theoretical basis for Wien's law, which became the Wien-Planck law. However, Wien's law was only valid at high frequencies, and underestimated the radiancy at low frequencies. Planck corrected the theory and proposed what is now called Planck's law, which led to the development of quantum theory. However, Wien's other empirical formulation , called Wien's displacement law, is still very useful, as it relates the peak wavelength emitted by a body (λmax), to the temperature of the body (T). In 1900 (following the work of George Frederick Charles Searle), he assumed that the entire mass of matter is of electromagnetic origin and proposed the formula for the relation between electromagnetic mass and electromagnetic energy.

While studying streams of ionized gas, Wien, in 1898, identified a positive particle equal in mass to the hydrogen atom. Wien, with this work, laid the foundation of mass spectrometry. J. J. Thomson refined Wien's apparatus and conducted further experiments in 1913 then, after work by Ernest Rutherford in 1919, Wien's particle was accepted and named the proton. During April 1913, Wien was a lecturer at Columbia University.[2]

In 1911, Wien was awarded the Nobel Prize in Physics "for his discoveries regarding the laws governing the radiation of heat."[3]

See also

Publications

German Wikisource has original text related to this article:
Wikisource has original works written by or about:
Wilhelm Wien

References

Wikimedia Commons has media related to Wilhelm Wien.
This article is issued from Wikipedia - version of the 10/20/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.