Toda's theorem
Toda's theorem is a result in computational complexity theory that was proven by Seinosuke Toda in his paper "PP is as Hard as the Polynomial-Time Hierarchy" (1991) and was given the 1998 Gödel Prize.
Statement
The theorem states that the entire polynomial hierarchy PH is contained in PPP; this implies a closely related statement, that PH is contained in P#P.
Definitions
#P is the problem of exactly counting the number of solutions to a polynomially-verifiable question (that is, to a question in NP), while loosely speaking, PP is the problem of giving an answer which is correct at least half the time. The class P#P consists of all the problems which can be solved in polynomial time if you have access to instantaneous answers to any counting problem in #P (polynomial time relative to a #P oracle). Thus Toda's theorem implies that for any problem in the polynomial hierarchy there is a deterministic polynomial-time Turing reduction to a counting problem.[1]
An analogous result in the complexity theory over the reals (in the sense of Blum–Shub–Smale real Turing machines) was proved by Saugata Basu and Thierry Zell in 2009[2] and a complex analogue of Toda's theorem was proved by Saugata Basu in 2011.[3]
Proof
The proof is broken into two parts.
- First, it is established that
- The proof uses a variation of Valiant–Vazirani theorem. Because contains and is closed under complement, it follows by induction that .
- Second, it is established that
Together, the two parts imply
References
- ↑ 1998 Gödel Prize. Seinosuke Toda
- ↑ Saugata Basu and Thierry Zell (2009); Polynomial Hierarchy, Betti Numbers and a Real Analogue of Toda's Theorem, in Foundations of Computational Mathematics
- ↑ Saugata Basu (2011); A Complex Analogue of Toda's Theorem, in Foundations of Computational Mathematics