Ternary commutator
In mathematical physics, the ternary commutator is an additional ternary operation on a triple system defined by
Also called the ternutator or alternating ternary sum, it is a special case of the n-commutator for n = 3, whereas the 2-commutator is the ordinary commutator.
Further reading
- Bremner, Murray R. (15 August 1998), "Identities for the Ternary Commutator" (PDF), Journal of Algebra, 206 (2): 615–623, doi:10.1006/jabr.1998.7433
- Bremner, Murray R.; Ortega, Juana Sánchez (25 October 2010), "The partially alternating ternary sum in an associative dialgebra", Journal of Physics A: Mathematical and Theoretical, 43 (56), arXiv:1008.2721, doi:10.1088/1751-8113/43/45/455215
- Bremner, Murray R.; Peresi, Luiz A. (1 April 2006), "Ternary analogues of Lie and Malcev algebras" (PDF), Linear Algebra and its Applications, 414 (1): 1–18, doi:10.1016/j.laa.2005.09.004
- Bremner, Murray R.; Peresi, Luiz A. (26 July 2012), Higher identities for the ternary commutator, arXiv:1207.6312
- Devchand, Chandrashekar; Fairlie, David; Nuyts, Jean; Weingart, Gregor (6 November 2009), "Ternutator identities", Journal of Physics A: Mathematical and Theoretical, 42 (47), arXiv:0908.1738, doi:10.1088/1751-8113/42/47/475209
- Nambu, Yoichiro (1973), "Generalized Hamiltonian Dynamics", Physical Review D, 7 (8): 2405–2412, doi:10.1103/PhysRevD.7.2405
This article is issued from Wikipedia - version of the 7/28/2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.