Tachocline

Internal rotation in the Sun, showing differential rotation in the outer convective region and almost uniform rotation in the central radiative region. The transition between these regions is called the tachocline.

The tachocline is the transition region of the Sun between the radiative interior and the differentially rotating outer convective zone. It is in the outer third of the Sun (by radius). This causes the region to have a very large shear as the rotation rate changes very rapidly. The convective exterior rotates as a normal fluid with differential rotation with the poles rotating slowly and the equator rotating quickly. The radiative interior exhibits solid-body rotation, possibly due to a fossil field. The rotation rate through the interior is roughly equal to the rotation rate at mid-latitudes, i.e. in-between the rate at the slow poles and the fast equator. Recent results from helioseismology indicate that the tachocline is located at a radius of at most 0.70 times the Solar radius (measured from the core, i.e., the surface is at 1 solar radius), with a thickness of 0.04 times the solar radius. This would mean the area has a very large shear profile that is one way that large scale magnetic fields can be formed. The geometry and width of the tachocline plays an important role in models of the solar dynamo by winding up weaker poloidal field to create a much stronger toroidal field. The term tachocline was coined in a paper by Edward Spiegel and Jean-Paul Zahn in 1992[1] by analogy to the oceanic thermocline.

An illustration of the structure of the Sun
 · Granules
 · Sunspot
 · Photosphere
 · Chromosphere
 · Convection zone
 · Radiation zone
 · Tachocline
 · Solar core
 · Corona
 · Flare
 · Prominence
 · Solar wind

References

  1. Spiegel, E.~A., & Zahn, J.-P., 1992, Astronomy and Astrophysics, 265, 106

External links

Additional References


This article is issued from Wikipedia - version of the 12/15/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.