Super-prime
Super-prime numbers (also known as "higher order primes") are the subsequence of prime numbers that occupy prime-numbered positions within the sequence of all prime numbers. The subsequence begins
- 3, 5, 11, 17, 31, 41, 59, 67, 83, 109, 127, 157, 179, 191, 211, 241, 277, 283, 331, 353, 367, 401, 431, 461, 509, 547, 563, 587, 599, 617, 709, 739, 773, 797, 859, 877, 919, 967, 991, ... (sequence A006450 in the OEIS).
That is, if p(i) denotes the ith prime number, the numbers in this sequence are those of the form p(p(i)). Dressler & Parker (1975) used a computer-aided proof (based on calculations involving the subset sum problem) to show that every integer greater than 96 may be represented as a sum of distinct super-prime numbers. Their proof relies on a result resembling Bertrand's postulate, stating that (after the larger gap between super-primes 5 and 11) each super-prime number is less than twice its predecessor in the sequence.
Broughan and Barnett[1] show that there are
super-primes up to x. This can be used to show that the set of all super-primes is small.
One can also define "higher-order" primeness much the same way, and obtain analogous sequences of primes. Fernandez (1999)
A variation on this theme is the sequence of prime numbers with palindromic prime indices, beginning with
References
- ↑ Kevin A. Broughan and A. Ross Barnett, On the Subsequence of Primes Having Prime Subscripts, Journal of Integer Sequences 12 (2009), article 09.2.3.
- Dressler, Robert E.; Parker, S. Thomas (1975), "Primes with a prime subscript", Journal of the ACM, 22 (3): 380–381, doi:10.1145/321892.321900, MR 0376599.
- Fernandez, Neil (1999), An order of primeness, F(p).