Subspace theorem

In mathematics, the subspace theorem is a result obtained by Wolfgang M. Schmidt (1972). It states that if L1,...,Ln are linearly independent linear forms in n variables with algebraic coefficients and if ε>0 is any given real number, then the non-zero integer points x with

lie in a finite number of proper subspaces of Qn.

A quantitative form of the theorem, in which the number of subspaces containing all solutions, was also obtained by Schmidt, and the theorem was generalised by Schlickewei (1977) to allow more general absolute values on number fields.

The theorem may be used to obtain results on Diophantine equations such as Siegel's theorem on integral points and solution of the S-unit equation.

A corollary on Diophantine approximation

The following corollary to the subspace theorem is often itself referred to as the subspace theorem. If a1,...,an are algebraic such that 1,a1,...,an are linearly independent over Q and ε>0 is any given real number, then there are only finitely many rational n-tuples (x1/y,...,xn/y) with

The specialization n = 1 gives the Thue–Siegel–Roth theorem. One may also note that the exponent 1+1/n+ε is best possible by Dirichlet's theorem on diophantine approximation.

References

This article is issued from Wikipedia - version of the 8/16/2015. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.