Pseudomonas protegens

Pseudomonas protegens
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Pseudomonadales
Family: Pseudomonadaceae
Genus: Pseudomonas
Species: P. protegens
Binomial name
Pseudomonas protegens
Ramette et al. 2011
Type strain
DSM 19095

ATCC BAA-477

Synonyms

Pseudomonas fluorescens Flügge 1886

Pseudomonas protegens are widespread Gram-negative, plant-protecting bacteria.[1] Some of the strains of this novel bacterial species (CHA0 and Pf-5, for example) previously belonged to P. fluorescens. They were reclassified since they seem to cluster separately from other fluorescent Pseudomonas species. P. protegens is phylogenetically related to the Pseudomonas species complexes P. fluorescens, P. chlororaphis, and P. syringae. The bacterial species characteristically produces the antimicrobial compounds pyoluteorin and 2,4-diacetylphloroglucinol (DAPG) which are active against various plant pathogens.[1][2]

General characteristics

Like P. fluorescens, Pseudomonas protegens is a typical soil microorganism with an extremely versatile metabolism, and can be isolated from roots of various plant species. The microbe is strictly aerobe (no reduction of nitrate) and oxidase-positive.[1] The bacterium grows at temperatures between 4 °C and 36 °C, and has one to three flagella.[3]

The name

The word Pseudomonas means 'false unit', being derived from the Greek words pseudo (Greek: ψευδο 'false') and monas (Latin: monas, fr. Greek: μονάς/μονάδα 'a single unit'). The species name 'protegens' refers to the bacterium's ability to protect plants from soil-borne phytopathogens.[1]

Genome sequencing projects

The genome of P. protegens strain Pf-5[4] has been sequenced and published.[5]

Biocontrol properties

Pseudomonas protegens has been studied for more than twenty years for its biocontrol properties.[6] Most studies have been carried out with the model strains CHA0 and Pf-5.

Insecticidal activity

In addition to efficiently protect plant roots against phytopathogenic fungi (described in detail for P. fluorescens), Pseudomonas protegens was discovered to display toxicity towards certain insects upon oral ingestion or injection into the hemolymph.[7][8][9] The insecticidal activity of the bacterium was found to be in part due to the production of an insect toxin (FitD), which is similar to a well-known protein toxin (Mcf) produced by Photorhabdus luminescens.

References

  1. 1 2 3 4 Ramette; et al. (2011). "Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin". Systematic and Applied Microbiology. 34: 180–188. doi:10.1016/j.syapm.2010.10.005.
  2. Haas, D; Defago, G (2005). "Biological control of soil-borne pathogens by fluorescent pseudomonads". Nature Reviews in Microbiology. 3 (4): 307–19. doi:10.1038/nrmicro1129. PMID 15759041.
  3. Voisard, C. (1988) Etude génétique de Pseudomonas fluorescens CHA0, une souche antagoniste de champignons phytopathogènes. In: PhD Dissertation No. 8663, ETHZ, Zürich.
  4. Pseudomonas fluorescens Pf-5 Genome Page
  5. Loper; et al. (2007). "The genomic sequence of Pseudomonas fluorescens Pf-5: Insights into biological control". Phytopathology. 97: 233–8. doi:10.1094/phyto-97-2-0233.
  6. Haas; Keel (2003). "Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease". Annu. Rev. Phytopathol. 41: 117–53.
  7. Péchy-Tarr; et al. (2008). "Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens". Environmental Microbiology. 10 (9): 2368–2386. doi:10.1111/j.1462-2920.2008.01662.x.
  8. Ruffner; et al. (2012). "Oral insecticidal activity of plant-associated pseudomonads". Environmental Microbiology. 15: 751–763. doi:10.1111/j.1462-2920.2012.02884.x.
  9. Devi; Kothamasi (2009). "Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain". FEMS Microbiol Lett. 300 (2): 195–200. doi:10.1111/j.1574-6968.2009.01782.x.

External links

This article is issued from Wikipedia - version of the 10/19/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.