Proline organocatalysis

Proline organocatalysis is the use of proline as an organocatalyst in organic chemistry.

Some proline-catalyzed Michael reactions initially provided poor enantioselectivity. Newer modifications, such as MacMillan’s catalyst and Jorgensen's catalysts, improved the stereocontrol.[1]:5574[2]

Background

Proline catalysis was initially reported by two groups at Schering AG and Hoffmann-La Roche.[3][4][5][6] Proline's chiral structure enables enantioselective synthesis, favoring a particular enantiomer or diastereomer.[1]:5574[3][7][8][9]:47

Reactions

Proline catalysis has been reviewed.[3]

In the Hajos–Parrish–Eder–Sauer–Wiechert reaction, proline catalyses an asymmetric aldol reaction. The zwitterionic character and the H-bonding of proline in the transition state plays an important role in explaining the reaction outcome.[10][11][12][13] An enamine transition state is formed during the reaction and only one proline molecule is involved in forming the transition state.[14]

Asymmetric synthesis of the Wieland-Miescher ketone is also based on proline.[15] Additional reactions include aldol reactions,[16][17][18][19] Mannich reaction,[20][21][22] Michael reaction,[23][24] amination,[21] α-oxyamination,[25][26] and α-halogenation.[27][28]

MacMillan’s and Jorgensen’s groups introduced modifications on the basic proline structure, achieving more enantioselective and regioselective catalysts.[27][28] These proline-derived auxiliaries and catalysts,[29] including the Enders hydrazone reaction and Corey–Itsuno reduction, have been reviewed,[30][31] as have MacMillan’s iminium catalysts,[32] Miller catalysts,[32] and CBS-oxazaborolidines.[33]

References

  1. 1 2 List, B. (2002). "Proline-catalyzed asymmetric reactions". Tetrahedron. 58 (28): 5573–5590. doi:10.1016/S0040-4020(02)00516-1.
  2. Wang, Z. (2009). In "Comprehensive Organic Name Reactions and Reagents", page 1306, John Wiley & Sons. ISBN 0471704504, ISBN 9780471704508
  3. 1 2 3 Gaunt, M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. (2007). "Enantioselective organocatalysis". Drug Discovery Today. 12 (1–2): 8–27. doi:10.1016/j.drudis.2006.11.004. PMID 17198969.
  4. Hajos, Z. G. and Parrish, D. R. (1971) German Patent DE 2102623
  5. Eder, U.; Sauer, G.; Wiechert, R. (1971). "New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures". Angewandte Chemie International Edition in English. 10 (7): 496–497. doi:10.1002/anie.197104961.
  6. Hajos, Z. G.; Parrish, D. R. (1974). "Synthesis and conversion of 2-methyl-2-(3-oxobutyl)-1,3-cyclopentanedione to the isomeric racemic ketols of the \3.2.1]bicyclooctane and of the perhydroindane series". The Journal of Organic Chemistry. 39 (12): 1612. doi:10.1021/jo00925a002.
  7. Dalko, P.; Moisan, L. (2001). "Enantioselective Organocatalysis". Angewandte Chemie International Edition. 40 (20): 3726–3748. doi:10.1002/1521-3773(20011015)40:20<3726::AID-ANIE3726>3.0.CO;2-D.
  8. Berkessel, A., Groeger, H. (2005). "Asymmetric Organocatalysis". Wiley-VCH ISBN 3527305173
  9. Dalko, P.I. (editor) (2007). "Enantioselective Organocatalysis: Reactions and Experimental Procedures". John Wiley & Sons. ISBN 9783527315222
  10. Hajos, Z. G.; Parrish, D. R. (1974). "Asymmetric synthesis of bicyclic intermediates of natural product chemistry". The Journal of Organic Chemistry. 39 (12): 1615–1621. doi:10.1021/jo00925a003.
  11. Clemente, F. R.; Houk, K. N. (2004). "Computational Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline". Angewandte Chemie. 116 (43): 5890. doi:10.1002/ange.200460916.
  12. List, B.; Hoang, L.; Martin, H. J. (2004). "Asymmetric Catalysis Special Feature Part II: New mechanistic studies on the proline-catalyzed aldol reaction". Proceedings of the National Academy of Sciences. 101 (16): 5839. doi:10.1073/pnas.0307979101.
  13. Rankin, K. N.; Gauld, J. W.; Boyd, R. J. (2002). "Density Functional Study of the Proline-Catalyzed Direct Aldol Reaction". The Journal of Physical Chemistry A. 106 (20): 5155. doi:10.1021/jp020079p.
  14. Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. (2003). "Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions". Journal of the American Chemical Society. 125 (1): 16–17. doi:10.1021/ja028634o. PMID 12515489.
  15. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B. W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H. (1981). "Asymmetric total synthesis of erythromcin. 1. Synthesis of an erythronolide a secoacid derivative via asymmetric induction". Journal of the American Chemical Society. 103 (11): 3210. doi:10.1021/ja00401a049.
  16. Northrup, A. B.; MacMillan, D. W. C. (2002). "The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes". Journal of the American Chemical Society. 124 (24): 6798–6799. doi:10.1021/ja0262378. PMID 12059180.
  17. Notz, W.; List, B. (2000). "Catalytic Asymmetric Synthesis ofanti-1,2-Diols". Journal of the American Chemical Society. 122 (30): 7386. doi:10.1021/ja001460v.
  18. List, B.; Pojarliev, P.; Castello, C. (2001). "Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes". Organic Letters. 3 (4): 573–575. doi:10.1021/ol006976y. PMID 11178828.
  19. List, B.; Lerner, R. A.; Barbas, C. F. (2000). "Proline-Catalyzed Direct Asymmetric Aldol Reactions". Journal of the American Chemical Society. 122 (10): 2395. doi:10.1021/ja994280y.
  20. Córdova, A.; Watanabe, S.; Tanaka, F.; Notz, W.; Barbas Cf, 3. (2002). "A highly enantioselective route to either enantiomer of both alpha- and beta-amino acid derivatives". Journal of the American Chemical Society. 124 (9): 1866–1867. doi:10.1021/ja017833p. PMID 11866595.
  21. 1 2 List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. (2002). "The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction: Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols". Journal of the American Chemical Society. 124 (5): 827–833. doi:10.1021/ja0174231. PMID 11817958.
  22. Marques, M. M. B. (2006). "Catalytic Enantioselective Cross-Mannich Reaction of Aldehydes". Angewandte Chemie International Edition. 45 (3): 348–352. doi:10.1002/anie.200502630.
  23. List, B.; Pojarliev, P.; Martin, H. J. (2001). "Efficient Proline-Catalyzed Michael Additions of Unmodified Ketones to Nitro Olefins". Organic Letters. 3 (16): 2423–2425. doi:10.1021/ol015799d. PMID 11483025.
  24. List, B.; Castello, C. (2001). "A Novel Proline-Catalyzed Three-Component Reaction of Ketones, Aldehydes, and Meldrum's Acid". Synlett. 2001 (11): 1687. doi:10.1055/s-2001-18095.
  25. Zhong, G. (2003). "A Facile and Rapid Route to Highly Enantiopure 1,2-Diols by Novel Catalytic Asymmetricα-Aminoxylation of Aldehydes". Angewandte Chemie International Edition. 42 (35): 4247–4250. doi:10.1002/anie.200352097.
  26. Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. (2003). "The Direct and Enantioselective Organocatalytic α-Oxidation of Aldehydes". Journal of the American Chemical Society. 125 (36): 10808–10809. doi:10.1021/ja037096s. PMID 12952459.
  27. 1 2 Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. (2004). "Direct and Enantioselective Organocatalytic α-Chlorination of Aldehydes". Journal of the American Chemical Society. 126 (13): 4108–4109. doi:10.1021/ja049562z. PMID 15053591.
  28. 1 2 Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjaersgaard, K. A.; Jørgensen, K. A. (2005). "A General Organocatalyst for Direct α-Functionalization of Aldehydes: Stereoselective C−C, C−N, C−F, C−Br, and C−S Bond-Forming Reactions. Scope and Mechanistic Insights". Journal of the American Chemical Society. 127 (51): 18296–18304. doi:10.1021/ja056120u. PMID 16366584.
  29. Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V. (2005). "Organocatalysis with proline derivatives: Improved catalysts for the asymmetric Mannich, nitro-Michael and aldol reactions". Organic & Biomolecular Chemistry. 3: 84. doi:10.1039/b414742a.
  30. Job, A.; Janeck, C. F.; Bettray, W.; Peters, R.; Enders, D. (2002). "The SAMP-/RAMP-hydrazone methodology in asymmetric synthesis". Tetrahedron. 58 (12): 2253. doi:10.1016/S0040-4020(02)00080-7.
  31. Corey, E. J.; Helal, C. J. (1998). "Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method". Angewandte Chemie International Edition. 37 (15): 1986. doi:10.1002/(SICI)1521-3773(19980817)37:15<1986::AID-ANIE1986>3.0.CO;2-Z.
  32. 1 2 Jarvo, E. R.; Miller, S. J. (2002). "Amino acids and peptides as asymmetric organocatalysts". Tetrahedron. 58 (13): 2481. doi:10.1016/S0040-4020(02)00122-9.
  33. Stemmler, R. (2007). "CBS Oxazaborolidines - Versatile Catalysts for Asymmetric Synthesis". Synlett. 2007 (6): 0997–0998. doi:10.1055/s-2007-973876.
This article is issued from Wikipedia - version of the 8/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.