Lysophosphatidic acid

Lysophosphatidic acid
Names
IUPAC name
(2-hydroxy-3-phosphonooxypropyl) (Z)-octadec-9-enoate
Other names
LPA
Identifiers
22002-87-5 YesY
3D model (Jmol) Interactive image
ChEMBL ChEMBL117021 N
ECHA InfoCard 100.040.631
2906
MeSH lysophosphatidic+acid
PubChem 5497152
Properties
C21H41O7P
Molar mass 436.52 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Lysophosphatidic acid (LPA) is a phospholipid derivative that can act as a signaling molecule.[1]

Function

LPA acts as a potent mitogen due to its activation of three high-affinity G-protein-coupled receptors called LPAR1, LPAR2, and LPAR3 (also known as EDG2, EDG4, and EDG7). Additional, newly identified LPA receptors include LPAR4 (P2RY9,GPR23), LPAR5 (GPR92) and LPAR6 (P2RY5,GPR87).

Clinical significance

Because of its ability to stimulate cell proliferation, aberrant LPA-signaling has been linked to cancer in numerous ways. Dysregulation of autotaxin or the LPA receptors can lead to hyperproliferation, which may contribute to oncogenesis and metastasis.[2]

LPA may be the cause of pruritus (itching) in individuals with cholestatic (impaired bile flow) diseases.

GTPase activation

Downstream of LPA receptor activation, the small GTPase Rho can be activated, subsequently activating Rho kinase. This can lead to the formation of stress fibers and cell migration through the inhibition of myosin light-chain phosphatase.

Metabolism

There are a number of potential routes to its biosynthesis, but the most well-characterized is by the action of a lysophospholipase D called autotaxin, which removes the choline group from lysophosphatidylcholine.

Lysophosphatidic acid is also an intermediate in the synthesis of phosphatidic acid.

See also

References

  1. Reginald Garrett; Charles M. Grisham (28 December 2008). Biochemistry. Cengage Learning. pp. 235–. ISBN 978-0-495-10935-8. Retrieved 20 December 2010.
  2. Benesch, MG; Ko, YM; McMullen, TP; Brindley, DN (2014). "Autotaxin in the crosshairs: taking aim at cancer and other inflammatory conditions". FEBS Letters. 588 (16): 2712–27. doi:10.1016/j.febslet.2014.02.009. PMID 24560789.

Further reading

This article is issued from Wikipedia - version of the 11/21/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.