List of sequenced plant genomes

This list of sequenced plant genomes contains plant species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle only sequences. For all kingdoms, see the list of sequenced genomes.

Algae

Unicellular photosynthetic eukaryotes.

Organism strain Clade Relevance Genome size Number of genes predicted Organization Year of completion Assembly status Links
Cyanophora paradoxa Glaucophyte Rutgers University[1] 2012[1]
Bathycoccus prasinos BBAN7 Green algae Comparative analysis 15 Mb Joint Genome Institute 2012[2]
Chlamydomonas reinhardtii CC-503 cw92 mt+ Green algae Model organism 111 Mb 17,737 University of California at Los Angeles[3] 2007 "Chlamydomonas reinhardtii". National Center for Biotechnology Information (NCBI).  ENA GCA_000002595
Chlorella variabilis NC64A Green algae 2010[4]
Coccomyxa subellipsoidea sp. C-169 Green algae Model biofuel Joint Genome Institute 2007[5]
Dunaliella salina CCAP19/18 Green algae Halophilic, biofuel and beta-carotene production Joint Genome Institute Organelle genomes complete,[6] nuclear genome in progress
Micromonas pusilla CCMP1545 Green algae Marine phytoplankton Joint Genome Institute 2007[7][8]
Micromonas pusilla RCC299/NOUM17 Green algae Marine phytoplankton Joint Genome Institute 2007[8][9]
Ostreococcus lucimarinus CCE9901 Green algae Simple eukaryote, small genome 13.2 Mb 7,796 2007[10]
Ostreococcus tauri OTH95 Green algae Simple eukaryote, small genome 2006[11]
Ostreococcus sp. RCC809 Green algae 7,773 Joint Genome Institute 2008[12]
Volvox carteri Green algae Multicellular alga, model organism ~131.2 Mb 14,971 2010[13]
Chondrus crispus Red algae 105 Mb 9,606 Genoscope/Station Biologique de Roscoff 2013[14]
Cyanidioschyzon merolae Strain:10D Red algae Photo-autotrophic 16.73 Mb5,017 2004,[15] 2007 [16]
Galdieria sulphuraria Red algae Thermo-acidophilic (extremophile) 13.7 Mb6,623 2005[17] 2005 [18] 2013 [19]
Porphyridium purpureum Red algae 19.7 Mb8,355 2013 [20]
Pyropia yezoensis Red algae 43 Mb10,327 2013 [21]
Ectocarpus siliculosus Brown algae (Heterokontophyta) distantly related to plants Station Biologique de Roscoff 2010[22]

Bryophytes

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Physcomitrella patens ssp. patens str. Gransden 2004 Bryophytes Early diverging land plant 2008[23]

Higher plants (vascular plants)

Organism strain Division Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Selaginella moellendorffii Lycopodiophyta Model organism 2011[24][25]

Angiosperms

Amborellales

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Amborella trichopoda Amborellaceae Basal angiosperm 2013[26][27]

Eudicots

Ranunculales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Aquilegia caerulea Ranunculaceae Basal eudicot Unpublished[28]
Proteales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Nelumbo nucifera Nelumbonaceae Basal eudicot 2013[29]
Caryophyllales
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Beta vulgaris (sugar beet) Chenopodiaceae Crop plant 714–758 Mbp 27,421 2013[30]
Rosids
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Betula nana (dwarf birch) Betulaceae Arctic shrub 450 Mbp QMUL/SBCS 2013[31]
Aethionema arabicum Brassicaceae Comparative analysis of crucifer genomes 2013[32]
Arabidopsis lyrata Brassicaceae model plant 2011[33]
Arabidopsis thaliana Ecotype:Columbia Brassicaceae Model plant 135 Mbp 2000[34]
Brassica rapa (Chinese cabbage) Brassicaceae Assorted crops and model organism 2011[35]
Capsella rubella Brassicaceae Close relative of Arabidopsis thaliana 130Mbp 26,521 JGI 2013?[36] 2013[37]
Eutrema salsugineum Brassicaceae A relative of arabidopsis with high salt tolerance 240Mbp 26,351 JGI 2013[38]
Eutrema parvulum Brassicaceae Comparative analysis of crucifer genomes 2013[32]
Leavenworthia alabamica Brassicaceae Comparative analysis of crucifer genomes 2013[32]
Sisymbrium irio Brassicaceae Comparative analysis of crucifer genomes 2013[32]
Thellungiella parvula Brassicaceae A relative of arabidopsis with high salt tolerance 2011[39]
Cannabis sativa (hemp) Cannabaceae Hemp and marijuana production ca 820Mbp 30,074 based on transcriptome assembly and clustering 2011[40] Illumina/454

scaffold N50 16.2 Kbp

Carica papaya (papaya) Caricaceae Fruit crop 372Mbp 28,629 2008[41] contig N50 11kbp

scaffold N50

1Mbp

total coverage ~3x (Sanger)

92.1% unigenes mapped

235Mbp anchored (of this 161Mbp also oriented)

Kalanchoe Crassulaceae 2013?[42]
Citrullus lanatus (watermelon) Cucurbitaceae Vegetable crop ca 425Mbp 23,440 BGI 2012[43] Illumina

coverage 108.6x

contig N50 26.38 kbp

Scaffold N50 2.38 Mbp

genome covered 83.2%

~97% ESTs mapped

Cucumis melo (Muskmelon) DHL92 Cucurbitaceae Vegetable crop 450Mbp 27,427 2012[44] 454

13.5x coverage

contig N50: 18.1kbp

scaffold N50: 4.677 Mbp

WGS

Cucumis sativus (cucumber) 'Chinese long' inbred line 9930 Cucurbitaceae Vegetable crop 350 Mbp (Kmer depth) 367 Mbp (flow cytometry) 26,682 2009[45] contig N50 19.8kbp

scaffold N50 1,140kbp

total coverage ~72.2 (Sanger + Ilumina)

96.8% unigenes mapped

72.8% of the genome anchored

Hevea brasiliensis (rubber tree) Euphorbiaceae the most economically important member of the genus Hevea 2013[46]
Jatropha curcas Palawan Euphorbiaceae bio-diesel crop 2010[47]
Manihot esculenta (Cassava) Euphorbiaceae Humanitarian importance ~760Mb 30,666 JGI 2012[48]
Ricinus communis (Castor bean) Euphorbiaceae Oilseed crop 320Mbp 31,237 JCVI 2010[49] Sanger coverage~4.6x contig N50 21.1 kbp scaffold N50 496.5kbp
Cajanus cajan (Pigeon pea) var. Asha Fabaceae Model legume 2012[50][51]
Arachis duranensis (A genome diploid wild peanut) accession V14167 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[52] Illumina 154x coverage, contig N50 22 kbp, scaffold N50 948 kbp
Arachis ipaensis (B genome diploid wild peanut) accession K30076 Fabaceae Wild ancestor of peanut, an oilseed and grain legume crop 2016[52] Illumina 163x coverage, contig N50 23 kbp, scaffold N50 5,343 kbp
Cicer arietinum (chickpea) Fabaceae filling 2013[53]
Cicer arietinum L. (chickpea) Fabaceae 2013[54]
Glycine max (soybean) var. Williams 82 Fabaceae Protein and oil crop 1115Mbp 46,430 2010[55] Contig N50:189.4kbp

Scaffold N50:47.8Mbp

Sanger coverage ~8x

WGS

955.1 Mbp assembled

Lotus japonicus (Bird's-foot Trefoil) Fabaceae Model legume 2008[56]
Medicago truncatula (Barrel Medic) Fabaceae Model legume 2011[57]
Phaseolus vulgaris (common bean) Fabaceae Model bean 520Mbp 31,638 JGI 2013?[58]
Linum usitatissimum (flax) Linaceae Crop ~350Mbp 43,384 BGI et al. 2012 [59]
Gossypium raimondii Malvaceae One of the putative progenitor species of tetraploid cotton 2013?[60]
Theobroma cacao (cocoa tree) Malvaceae Flavouring crop 2010[61][62]
Theobroma cacao (cocoa tree) cv. Matina 1-6 Malvaceae Most widely cultivated cacao type 2013[63]
Azadirachta indica (neem) Meliaceae Source of number of Terpenoids, including biopesticide azadirachtin, Used in Traditional Medicine 364 Mbp ~20000 GANIT Labs 2012[64] and 2011[65] Illumina GAIIx, scaffold N50 of 452028bp, Transcriptome data from Shoot, Root, Leaf, Flower and Seed
Eucalyptus grandis (Rose gum) Myrtaceae Fibre and timber crop 2011[66]
Fragaria vesca (wild strawberry) Rosaceae Fruit crop 240Mbp 34,809 2011[67] scaffold N50: 1.3 Mbp

454/Illumina/solid

39x coverage

WGS

Malus domestica (apple) "Golden Delicious" Rosaceae Fruit crop ~742.3Mbp 57,386 2010[68] contig N50 13.4 (kbp??)

scafold N50 1,542.7 (kbp??)

total coverage ~16.9x (Sanger + 454)

71.2% anchored

Prunus amygdalus (almond) Rosaceae Fruit crop 2013?[69]
Prunus avium (sweet cherry) cv. Stella Rosaceae Fruit crop 2013?[69]
Prunus mume (Chinese plum or Japanese apricot) Rosaceae Fruit crop 2012[70]
Prunus persica (peach) Rosaceae Fruit crop 265Mbp 27,852 2013[71] Sanger coverage:8.47x

WGS

ca 99% ESTs mapped

215.9 Mbp in pseudomolecules

Pyrus bretschneideri (ya pear or Chinese white pear) cv. Dangshansuli Rosaceae Fruit crop 2012[72]
Pyrus communis (European pear) cv. Doyenne du Comice Rosaceae Fruit crop 2013?[69]
Citrus clementina (Clementine) Rutaceae Fruit crop 2013?[73]
Citrus sinensis (Sweet orange) Rutaceae Fruit crop 2013?,[73] 2013[74]
Populus trichocarpa (poplar) Salicaceae Carbon sequestration, model tree, timber 510 Mbp (cytogenetic) 485 Mbp (coverage) 73,013 [Phytozome] 2006[75] Scaffold N50: 19.5 Mbp

Contig N50:552.8 Kbp [phytozome]

WGS

>=95 % cDNA found

Vitis vinifera (grape) genotype PN40024 Vitaceae fruit crop 2007[76]
Asterids
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Mimulus guttatus Scrophulariaceae model system for studying ecological and evolutionary genetics ca 430Mbp 26,718 JGI 2013?[77] Scaffold N50 = 1.1 Mbp

Contig N50 = 45.5 Kbp

Solanum lycopersicum (tomato) cv. Heinz 1706 Solanaceae Food crop ca 900Mbp 34,727 SGN 2011[78] 2012[79] Sanger/454/Illumina/Solid

Pseudomolecules spanning 91 scaffolds (760Mbp of which 594Mbp have been oriented )

over 98% ESTs mappable

Solanum pimpinellifolium (Currant Tomato) Solanaceae closest wild relative to tomato 2012[79] Illumina

contig N50: 5100bp

~40x coverage

Solanum tuberosum (potato) Solanaceae Food crop 844 Mbp kmer (856 Mbp) 39,031 PGSC 2011[80] Sanger/454/Illumina

79.2x coverage

contig N50: 31,429bp

scaffold N50: 1,318,511bp

Solanum commersonii (commerson's nightshade) Solanaceae Wild potato relative 838 Mbp kmer (840 Mbp) 37,662 UNINA, UMN, UNIVR, Sequentia Biotech, CGR 2015[81] Illumina

105x coverage

contig N50: 6,506bp

scaffold N50: 44,298bp

Nicotiana benthamiana Solanaceae Close relative of tobacco ca 3Gbp 2012[82] Illumina

63x coverage

contig N50: 16,480bp

scaffold N50:89,778bp

>93% unigenes found

Nicotiana sylvestris (Tobacco plant) Solanaceae model system for studies of terpenoid production 2.636Gbp Philip Morris International 2013[83] 94x coverage

scaffold N50: 79.7 kbp

194kbp superscaffolds using physical Nicotiana map

Nicotiana tomentosiformis Solanaceae Tobacco progenitor 2.682 Gb Philip Morris International 2013[83] 146x coverage

scaffold N50: 82.6 kb

166kbp superscaffolds using physical Nicotiana map

Capsicum annuum (Pepper)

(a) cv. CM334 (b) cv. Zunla-1

Solanaceae Food crop ~3.48 Gbp (a) 34,903

(b) 35,336

(a) 2014[84]

(b) 2014[85]

N50 contig: (a) 30.0 kb (b) 55.4 kb

N50 scaffold: (a) 2.47 Mb (b) 1.23 Mb

Capsicum annuum var. glabriusculum (Chiltepin) Solanaceae Progenitor of cultivated pepper ~3.48 Gbp 34,476 2014[85] N50 contig: 52.2 kb

N50 scaffold: 0.45 Mb

Petunia Solanaceae Economically important flower 2011[86]
Utricularia gibba (humped bladderwort) Lentibulariaceae model system for studying genome size evolution; a carnivorous plant 81.87 Mb 28,494 LANGEBIO, CINVESTAV 2013[87] Scaffold N50: 80.839 Kb

Monocots

Grasses
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Setaria italica (Foxtail millet) Poaceae Model of C4 metabolism 2012[88]
Aegilops tauschii (Tausch's goatgrass) Poaceae bread wheat D-genome progenitor ca 4.36Gb BGI 2013[89] Non-repetitive sequence assembled
Brachypodium distachyon (purple false brome) Poaceae Model monocot 2010[90]
Hordeum vulgare (barley) Poaceae Model of ecological adoption IBSC 2012[91]
Oryza brachyantha (wild rice) Poaceae Disease resistant wild relative of rice 2013[92]
Oryza glaberrima (African rice) var CG14 Poaceae West-African species of rice 2010[93]
Oryza rufipogon (red rice) Poaceae Ancestor to Oryza sativa 406 Mb 37,071 SIBS 2012 [94] Illumina HiSeq2000

100x coverage

Oryza sativa (short grain rice) ssp indica Poaceae Crop and model cereal 2002[95]
Oryza sativa (long grain rice) ssp japonica Poaceae Crop and model cereal 2002[96]
Panicum virgatum (switchgrass) Poaceae biofuel 2013?[97]
Phyllostachys edulis (moso bamboo) Poaceae 2013[98]
Sorghum bicolor genotype BTx623 Poaceae Crop ca 730Mbp 34,496 2009[99] contig N50:195.4kbp

scaffold N50: 62.4Mbp

Sanger, 8.5x coverage

WGS

Triticum aestivum (bread wheat) Poaceae 20% of global nutrition 2012[100] Non-repetitive sequence assembled

Roche 454/Illumina WGS

Triticum urartu Poaceae Bread wheat A-genome progenitor ca 4.94Gb BGI 2013[101] Non-repetitive sequence assembled

Illumina WGS

Zea mays (maize) ssp mays B73 Poaceae Cereal crop 2,300Mbp 39,656[102] 2009[103] contig N50 40kbp

scaffold N50: 76kbp

Sanger, 4-6x coverage per BAC

Other non-grasses
Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Musa acuminata (Banana) Musaceae A-genome of modern banana cultivars 523 Mbp 36,542 2012[104] N50 contig: 43.1 kb

N50 scaffold: 1.3 Mb

Musa balbisiana (Wild banana) Musaceae B-genome of modern banana cultivars 438 Mbp 36,638 2013[105] N50 contig: 7.9 kb
Phoenix dactylifera (Date palm) Arecaceae Woody crop in arid regions 658 Mbp 28,800 2011[106] N50 contig: 6.4 kb
Elaeis guineensis (African oil palm) Arecaceae Oil-bearing crop ~1800 Mbp 34,800 2013[107] N50 scaffold: 1.27 Mb
Spirodela polyrhiza (Greater duckweed) Araceae Aquatic plant 158 Mbp 19,623 2014[108] N50 scaffold: 3.76 Mb

Gymnosperm

Organism strain Family Relevance Genome size Number of genes predicted Organization Year of completion Assembly status
Picea abies (Norway spruce) Pinaceae Timber, tonewood, ornamental such as Christmas tree 20 Gb 28,354 Umeå Plant Science Centre / SciLifeLab, Sweden 2013[109]
Picea glauca (White spruce) Pinaceae Timber, Pulp 20.8 Gb 56,064 Institutional Collaboration 2013[110]
Pinus taeda (Loblolly pine) Pinaceae Timber 20.15 Gb50,172 Institutional collaboration 2014[111][112][113] N50 scaffold size: 66.9 kbp

Uncategorised things to add...

the genome from Galdieria sulphuraria has finally been published (Schönknecht, G., W.-H. Chen, et al. (2013). "Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote." Science 339(6124): 1207-1210.) Genome size is 13.7 MB, and 6623 protein-coding genes were annotated.

Nakamura et al. published the genome sequence for Pyropia yezoensis (Nakamura, Y., N. Sasaki, et al. (2013). "The first symbiont-free genome sequence of marine red alga, Susabi-nori Pyropia yezoensis." PLoS ONE 8(3): e57122.).

Bhattacharya et al. published the genome of Porphyridium purpureum (Bhattacharya, D., D. C. Price, et al. (2013). "Genome of the red alga Porphyridium purpureum." Nature Communications 4.)

Press releases announcing sequencing

Not meeting criteria of the first paragraph of this article in being nearly full sequences with high quality, published, assembled and publicly available. This list includes species where sequences are announced in press releases or websites, but not in a data-rich publication in a refereed Journal with doi.

See also

References

  1. 1 2 Price DC, Chan CX, Yoon HS; et al. (2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–847. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID 22344442.
  2. Genome Biology | Full text | Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage
  3. Merchant; Prochnik, SE; Vallon, O; Harris, EH; Karpowicz, SJ; Witman, GB; Terry, A; Salamov, A; et al. (2007). "The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions". Science. 318 (5848): 245–250. Bibcode:2007Sci...318..245M. doi:10.1126/science.1143609. PMC 2875087Freely accessible. PMID 17932292.
  4. Blanc G, Duncan G, Agarkova I, et al. (September 2010). "The Chlorella variabilis NC64A genome revals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". Plant Cell. 22 (9): 2943–2955. doi:10.1105/tpc.110.076406. PMC 2965543Freely accessible. PMID 20852019.
  5. Coccomyxa JGI entry
  6. Smith; Lee, RW; Cushman, JC; Magnuson, JK; Tran, D; Polle, JE; et al. (2010). "The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA". BMC Plant Biology. 10 (1): 83. doi:10.1186/1471-2229-10-83. PMC 3017802Freely accessible. PMID 20459666.
  7. Micromonas p.C3 JGI entry
  8. 1 2 Worden AZ, Lee JH, Mock T, et al. (April 10, 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–272. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590.
  9. Micromonas p.N3 JGI entry
  10. Palenik, B; Grimwood, J; Aerts, A; Rouzé, P; Salamov, A; Putnam, N; Dupont, C; Jorgensen, R; et al. (2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi:10.1073/pnas.0611046104. PMC 1863510Freely accessible. PMID 17460045.
  11. Derelle E, Ferraz C, Rombauts S, et al. (August 2006). "Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features". PNAS. 103 (31): 11647–52. Bibcode:2006PNAS..10311647D. doi:10.1073/pnas.0604795103. PMC 1544224Freely accessible. PMID 16868079.
  12. Info - Ostreococcus RCC809
  13. Prochnik SE, Umen J, Nedelcu AM; Umen; Nedelcu; Hallmann; Miller; Nishii; Ferris; Kuo; et al. (July 9, 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–226. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC 2993248Freely accessible. PMID 20616280.
  14. Collén, J.; Porcel, B.; Carré, W.; Ball, S. G.; Chaparro, C.; Tonon, T.; Boyen, C. (2013). "Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida". Proceedings of the National Academy of Sciences. 110: 5247–5252. doi:10.1073/pnas.1221259110.
  15. Matsuzaki M, Misumi O, Shin-I T, et al. (April 2004). "Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D". Nature. 428 (6983): 653–7. Bibcode:2004Natur.428..653M. doi:10.1038/nature02398. PMID 15071595.
  16. Nozaki; et al. (2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biol. 5: 28. doi:10.1186/1741-7007-5-28.
  17. Galdieria sulphuraria Genome Project at MSU
  18. "Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae". Plant Physiol. 137: 460–74. February 2005. doi:10.1104/pp.104.051169. PMC 1065348Freely accessible. PMID 15710685.
  19. Schönknecht; et al. (Mar 2013). "(March 8, 2013) Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote". Science. 339: 1207–1210. doi:10.1126/science.1231707. PMID 23471408.
  20. Bhattacharya; et al. (2013). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4: 1941. doi:10.1038/ncomms2931.
  21. Nakamura; et al. "(March 11, 2013) The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis)". PLoS ONE. 8 (3): e57122. doi:10.1371/journal.pone.0057122.
  22. Cock JM, Sterck L, Rouzé P; Sterck; Rouzé; Scornet; Allen; Amoutzias; Anthouard; Artiguenave; et al. (June 3, 2010). "The Ectocarpus genome and the independent evolution of multicellularity in brown algae". Nature. 465 (7298): 617–621. Bibcode:2010Natur.465..617C. doi:10.1038/nature09016. PMID 20520714.
  23. Rensing SA, Lang D, Zimmer AD, et al. (January 2008). "The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants". Science. 319 (5859): 64–9. Bibcode:2008Sci...319...64R. doi:10.1126/science.1150646. PMID 18079367.
  24. Banks JA, Nishiyama T, Hasebe M, et al. (20 May 2011). "The Selaginella genome identifies genetic changes associated with the evolution of vascular plants". Science. 332 (6032): 960–963. Bibcode:2011Sci...332..960B. doi:10.1126/science.1203810. PMC 3166216Freely accessible. PMID 21551031.
  25. JGI project page
  26. Amborella Genome Project (20 Dec 2013). "The Amborella genome and the evolution of flowering plants". Science. 342 (6165): 1241089. doi:10.1126/science.1241089. PMID 24357323.
  27. amborella.org
  28. Phytozome v9.1: Aquilegia caerulea
  29. Ray Ming; Robert VanBuren; Yanling Liu; Mei Yang; Yuepeng Han; et al. (10 May 2013). "Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)". Genome Biology. 14 (5): R41. doi:10.1186/gb-2013-14-5-r41.
  30. Juliane C. Dohm; André E. Minoche; Daniela Holtgräwe; Salvador Capella-Gutiérrez; Falk Zakrzewski; Hakim Tafer; Oliver Rupp; Thomas Rosleff Sörensen; Ralf Stracke; Richard Reinhardt; Alexander Goesmann; Thomas Kraft; Britta Schulz; Peter F. Stadler; Thomas Schmidt; Toni Gabaldón; Hans Lehrach; Bernd Weisshaar; Heinz Himmelbauer (December 2013). "The genome of the recently domesticated crop plant sugar beet (Beta vulgaris)". Nature. 505 (7484): 546–549. doi:10.1038/nature12817.
  31. Wang N, Thomson M, Bodles W, et al. (2013). "Genome sequence of dwarf birch (Betula nana) and cross-species RAD markers". Molecular Ecology. 22 (11): 3098–3111. doi:10.1111/mec.12131. PMID 23167599.
  32. 1 2 3 4 An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions : Nature Genetics : Nature Publishing Group
  33. Hu T, Pattyn P, Bakker EG, et al. (April 2011). "The Arabidopsis lyrata genome sequence and the basis of rapid genome size change". Nature Genetics. 43 (5): 476–81. doi:10.1038/ng.807.
  34. The Arabidopsis Genome Initiative (December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. doi:10.1038/35048692. PMID 11130711.
  35. Wang X, Wang H, Wang J, et al. (2011). "The genome of the mesopolypoid crop species Brassica rapa". Nature Genetics. 43: 1035–1039. doi:10.1038/ng.919. PMID 21873998.
  36. Phytozome v9.1: Capsella rubella
  37. Slotte T, et al. (2013). "The Capsella rubella genome and the genomic consequences of rapid mating system evolution.". Nature Genetics. 45 (7): 831–835. doi:10.1038/ng.2669. PMID 23749190.
  38. The Reference Genome of the Halophytic Plant... [Front Plant Sci. 2013] - PubMed - NCBI
  39. Dassanayake M, Oh DH, Haas JS, et al. (2011). "The genome of the extremophile crucifer Thellungiella parvula". Nature Genetics. 43 (9): 913–918. doi:10.1038/ng.889.
  40. van Bakel H, Stout JM, Cote AT, et al. (2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi:10.1186/gb-2011-12-10-r102. PMC 3359589Freely accessible. PMID 22014239.
  41. The draft genome of the transgenic tropical fruit tre... [Nature. 2008] - PubMed - NCBI
  42. Kalanchoe
  43. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions : Nature Genetics : Nature Publishing Group
  44. The genome of melon (Cucumis melo L.)
  45. Huang S, Li R, Zhang1 Z; et al. (December 2009). "The genome of the cucumber, Cucumis sativus L". Nature Genetics. 41 (12): 1275–. doi:10.1038/ng.475. PMID 19881527.
  46. BMC Genomics | Full text | Draft genome sequence of the rubber tree Hevea brasiliensis
  47. Sato S, Hirakawa H, Isobe S, et al. (February 2011). "Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L.". DNA Research. 18 (1): 65–76. doi:10.1093/dnares/dsq030. PMC 3041505Freely accessible. PMID 21149391.
  48. Prochnik et al. (2012), J. Tropical Plant Biology
  49. Chan AP, Crabtree J, Zhao Q, et al. (2010). "Draft genome sequence of the oilseed species Ricinus communis". Nature Biotechnology. 28 (9): "951–956". doi:10.1038/nbt.1674.
  50. Nagendra K. Singh, Deepak K. Gupta, Pawan K. Jayaswal, Ajay K. Mahato, Sutapa Dutta, Sangeeta Singh, Shefali Bhutani, Vivek Dogra, Bikram P. Singh and Giriraj Kumawat; et al. (2012). "The first draft of the pigeonpea genome sequence". Journal of Plant Biochemistry and Biotechnology. 21 (1): 98–112. doi:10.1007/s13562-011-0088-8. PMC 3886394Freely accessible. PMID 24431589.
  51. Varshney RK, Chen W, Li Y, et al. (2012). "Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers". Nature Biotechnology. 30 (1): 83–89. doi:10.1038/nbt.2022. PMID 22057054.
  52. 1 2 Bertioli, David John; Cannon, Steven B.; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D.; Cannon, Ethalinda K. S.; Liu, Xin; Gao, Dongying; Clevenger, Josh (2016-04-01). "The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut". Nature Genetics. 48 (4): 438–446. doi:10.1038/ng.3517. ISSN 1061-4036.
  53. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement : Nature Biotechnology : Nature Publishing Group
  54. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.) - Jain - 2013 - The Plant Journal - Wiley Online Library
  55. Huang S, Li R, Zhang1 Z; et al. (10 January 2010). "Genome sequence of the palaeopolyploid soybean". Nature. 463 (12): 178–183. Bibcode:2010Natur.463..178S. doi:10.1038/nature08670. PMID 20075913.
  56. Sato S, Nakamura Y, Kaneko T, et al. (2008). "Genome structure of the legume, Lotus japonicus". DNA Research. 15 (4): 227–239. doi:10.1093/dnares/dsn008. PMC 2575887Freely accessible. PMID 18511435.
  57. Young ND, Debelle F, Oldroyd GE, et al. (2011). "The Medicago genome provides insight into the evolution of rizobial symbioses". Nature. 480 (7378). Bibcode:2011Natur.480..520Y. doi:10.1038/nature10625.
  58. Phytozome v9.1: Phaseolus vulgaris v1.0
  59. "The genome of flax ( Linum usitatissimum ) assembled de novo from short shotgun sequence reads". The Plant Journal. 72: 461–473. doi:10.1111/j.1365-313X.2012.05093.x.
  60. Phytozome v9.1: Gossypium raimondii v2.1
  61. Argout, Xavier; Salse, Jerome; Aury, Jean-Marc; Guiltinan, Mark J; Droc, Gaetan; Gouzy, Jerome; Allegre, Mathilde; Chaparro, Cristian; et al. (2010). "The genome of Theobroma cacao". Nature Genetics. 43 (2): 101–8. doi:10.1038/ng.736. PMID 21186351.
  62. Pennisi, E. (2010). "Genomics Researchers Upset by Rivals' Publicity". Science. 329 (5999): 1585. Bibcode:2010Sci...329.1585P. doi:10.1126/science.329.5999.1585. PMID 20929817.
  63. Genome Biology | Abstract | The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color
  64. BMC Genomics | Full text | A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica
  65. http://www.currentscience.ac.in/Volumes/101/12/1553.pdf
  66. Myburg, Alexander A.; Grattapaglia, Dario; Tuskan, Gerald A.; Hellsten, Uffe; Hayes, Richard D.; Grimwood, Jane; Jenkins, Jerry; Lindquist, Erika; Tice, Hope. "The genome of Eucalyptus grandis". Nature. doi:10.1038/nature13308.
  67. Shulaev V, Sargent DJ, Crowhurst RN, et al. (2011). "The genome of woodland strawberry (Fragaria vesca)". Nature Genetics. 43 (2): 109–116. doi:10.1038/ng.740. PMC 3326587Freely accessible. PMID 21186353.
  68. Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.; Troggio, M.; Pruss, D.; Salvi, S.; Pindo, M.; Baldi, P.; Castelletti, S.; Cavaiuolo, M.; Coppola, G.; Costa, F.; Cova, V.; Dal Ri, A.; Goremykin, V.; Komjanc, M.; Longhi, S.; Magnago, P.; Malacarne, G.; Malnoy, M.; Micheletti, D.; Moretto, M.; Perazzolli, M.; Si-Ammour, A.; Vezzulli, S. (2010). "The genome of the domesticated apple (Malus x domestica Borkh.)". Nature Genetics. 42 (10): 833–839. doi:10.1038/ng.654. PMID 20802477.
  69. 1 2 3 Gramene News » Blog Archive » Four Rosaceae Genomes Released
  70. The genome of Prunus mume : Nature Communications : Nature Publishing Group
  71. The International Peach Genome Initiative; et al. (2013). "The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution". Nature Genetics. 45 (5): 487–494. doi:10.1038/ng.2586. PMID 23525075.
  72. The genome of the pear (Pyrus bretschneideri Rehd.)
  73. 1 2 Phytozome v9.1: Citrus clementina
  74. Xu Q, et al. (2013). "The draft genome of sweet orange (Citrus sinensis)". Nature Genetics. 45 (1): 59–66. doi:10.1038/ng.2472. PMID 23179022.
  75. Tuskan GA, Difazio S, Jansson S, et al. (September 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. PMID 16973872.
  76. Jaillon O, Aury JM, Noel B, et al. (September 2007). "The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla". Nature. 449 (7161): 463–7. Bibcode:2007Natur.449..463J. doi:10.1038/nature06148. PMID 17721507.
  77. Phytozome v9.1: Mimulus guttatus
  78. Sol Genomics Network
  79. 1 2 The Tomato Genome Consortium (31 May 2012). "The tomato genome sequence provides insights into fleshy fruit evolution". Nature. 485 (7400): 635–641. Bibcode:2012Natur.485..635T. doi:10.1038/nature11119. PMC 3378239Freely accessible. PMID 22660326.
  80. Xu, X.; Xu, S.; Pan, S.; Cheng, B.; Zhang, D.; Mu, P.; Ni, G.; Zhang, S.; Yang, R.; Li, J.; Wang, G.; Orjeda, F.; Guzman, M.; Torres, R.; Lozano, O.; Ponce, D.; Martinez, G. N.; De La Cruz, S. K.; Chakrabarti, V. U.; Patil, K. G.; Skryabin, B. B.; Kuznetsov, N. V.; Ravin, T. V.; Kolganova, A. V.; Beletsky, A. V.; Mardanov, A.; Di Genova, D. M.; Bolser, D. M. A.; Martin, G.; Li, Y. (2011). "Genome sequence and analysis of the tuber crop potato". Nature. 475 (7355): 189–195. doi:10.1038/nature10158. PMID 21743474.
  81. Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Dal Molin A, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Aiese Cigliano R, Capella-Gutierrez S, Gabaldón T, Frusciante L, Bradeen JM, Carputo D. (14 Apr 2015). "The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives". The Plant Cell. 27 (4): 954–968. doi:10.1105/tpc.114.135954. PMID 25873387.
  82. A draft genome sequence of Nicoti... [Mol Plant Microbe Interact. 2012] - PubMed - NCBI
  83. 1 2 Genome Biology | Abstract | Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis
  84. Kim; et al. (2014). "Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species". Nature Genetics. 46 (3): 270–278. doi:10.1038/ng.2877.
  85. 1 2 Qin; et al. (2014). "Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization.". Proc Natl Acad Sci U S A. 111: 5135–5140. doi:10.1073/pnas.1400975111.
  86. The Petunia Platform - Home
  87. Reference genome sequence of the model plant ... [Nat Biotechnol. 2012] - PubMed - NCBI
  88. Jia J, Zhou S, Kong X, et al. (2013). "Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation". Nature. 496 (7443): 91–95. Bibcode:2013Natur.496...91.. doi:10.1038/nature12028.
  89. The International Brachypodium Initiative (December 2009). "Genome sequencing and analysis of the model grass Brachypodium distachyon". Nature. 463 (7282): 763–8. Bibcode:2010Natur.463..763T. doi:10.1038/nature08747. PMID 20148030.
  90. The International Barley Genome Sequencing Consortium. "A physical, genetic and functional sequence assembly of the barley genome". Nature. 491 (7426). Bibcode:2012Natur.491..711T. doi:10.1038/nature11543.
  91. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution : Nature Communications : Nature Publishing Group
  92. Hurwitz, BL; Kudrna, D; Yu, Y; Sebastian, A; Zuccolo, A; Jackson, SA; Ware, D; Wing, RA; et al. (2010). "Rice structural variation: A comparative analysis of structural variation between rice and three of its closest relatives in the genus Oryza". The Plant journal : for cell and molecular biology. 63 (6): 990–1003. doi:10.1111/j.1365-313X.2010.04293.x. PMID 20626650.
  93. Huang, X.; Kurata, N.; Wei, X.; Wang, Z. X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; Guo, Y.; Lu, Y.; Zhou, C.; Fan, D.; Weng, Q.; Zhu, C.; Huang, T.; Zhang, L.; Wang, Y.; Feng, L.; Furuumi, H.; Kubo, T.; Miyabayashi, T.; Yuan, X.; Xu, Q.; Dong, G.; Zhan, Q.; Li, C.; Fujiyama, A.; et al. (2012). "A map of rice genome variation reveals the origin of cultivated rice". Nature. 490 (7421): 497–501. doi:10.1038/nature11532. PMID 23034647.
  94. Yu J, Hu S, Wang J, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. indica)". Science. 296 (5565): 79–92. Bibcode:2002Sci...296...79Y. doi:10.1126/science.1068037. PMID 11935017.
  95. Goff SA, Ricke D, Lan TH, et al. (April 2002). "A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)". Science. 296 (5565): 92–100. Bibcode:2002Sci...296...92G. doi:10.1126/science.1068275. PMID 11935018.
  96. Phytozome v9.1: Panicum virgatum
  97. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) : Nature Genetics : Nature Publishing Group
  98. Paterson, A.; Bowers, J.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; Schmutz, J.; Spannagl, M.; Tang, H.; Wang, X.; Wicker, T.; Bharti, A. K.; Chapman, J.; Feltus, F. A.; Gowik, U.; Grigoriev, I. V.; Lyons, E.; Maher, C. A.; Martis, M.; Narechania, A.; Otillar, R. P.; Penning, B. W.; Salamov, A. A.; Wang, Y.; Zhang, L.; et al. (2009). "The Sorghum bicolor genome and the diversification of grasses" (PDF). Nature. 457 (7229): 551–556. Bibcode:2009Natur.457..551P. doi:10.1038/nature07723. PMID 19189423.
  99. Brenchley R, Spannagl M, Pfeifer M, et al. (2012). "Analysis of the bread wheat genome using whole-genome shotgun sequencing". Nature. 491 (7426): 705–710. Bibcode:2012Natur.491..705B. doi:10.1038/nature11650. PMC 3510651Freely accessible. PMID 23192148.
  100. Ling H-Q, Zhou S, Liu D et al. (2013). "Draft genome of the wheat A-genome progenitor Triticum urartu". Nature. 496 (7443): 87–90. Bibcode:2013Natur.496...87L. doi:10.1038/nature11997.
  101. MaizeSequence 5b.60: Home
  102. Schnable P, Ware D, Fulton RS, et al. (22 November 2009). "The B73 Maize Genome: Complexity, Diversity, and Dynamics". Science. 326 (5956): 1112–1115. Bibcode:2009Sci...326.1112S. doi:10.1126/science.1178534. PMID 19965430.
  103. D’Hont; et al. (2012). "The banana (Musa acuminata) genome and the evolution of monocotyledonous plants". Nature. 488 (7410): 213–217. Bibcode:2012Natur.488..213D. doi:10.1038/nature11241. PMID 22801500.
  104. Davey; et al. (2013). "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.". BMC Genomics. 14: 683. doi:10.1186/1471-2164-14-683.
  105. Al-Dous; et al. (2011). "De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)". Nature Biotechnology. 29 (6): 521–527. doi:10.1038/nbt.1860.
  106. Singh; et al. (2013). "Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds.". Nature. 500 (7462): 335–339. doi:10.1038/nature12309.
  107. Wang; et al. (2014). "The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle.". Nature Commun. 5: 3311. doi:10.1038/ncomms4311. PMC 3948053Freely accessible. PMID 24548928.
  108. Nystedt, Björn; Street, Nathaniel R.; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G.; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania; Alexeyenko, Andrey; Vicedomini, Riccardo; Sahlin, Kristoffer; Sherwood, Ellen; Elfstrand, Malin; Gramzow, Lydia; Holmberg, Kristina; Hällman, Jimmie; Keech, Olivier; Klasson, Lisa; Koriabine, Maxim; Kucukoglu, Melis; Käller, Max; Luthman, Johannes; Lysholm, Fredrik; Niittylä, Totte; Olson, Åke; Rilakovic, Nemanja; Ritland, Carol; Rosselló, Josep A.; Sena, Juliana; Svensson, Thomas; Talavera-López, Carlos; Theißen, Günter; Tuominen, Hannele; Vanneste, Kevin; Wu, Zhi-Qiang; Zhang, Bo; Zerbe, Philipp; Arvestad, Lars; Bhalerao, Rishikesh; Bohlmann, Joerg; Bousquet, Jean; Garcia Gil, Rosario; Hvidsten, Torgeir R.; de Jong, Pieter; MacKay, John; Morgante, Michele; Ritland, Kermit; Sundberg, Björn; Lee Thompson, Stacey; Van de Peer, Yves; Andersson, Björn; Nilsson, Ove; Ingvarsson, Pär K.; Lundeberg, Joakim; Jansson, Stefan (2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–584. doi:10.1038/nature12211. PMID 23698360. Cite uses deprecated parameter |coauthors= (help)
  109. Birol, Inanc; Raymond, Anthony; Jackman, Shaun D.; Pleasance, Stephen; Coope, Robin; Taylor, Greg A.; Yuen, Macaire M.S.; Keeling, Christopher I.; Brand, Dana; Vandervalk, Benjamin P.; Kirk, Heather; Pandoh, Pawan; Moore, Richard A.; Zhao, Yongjun; Mungall, Andrew J.; Jaquish, Barry; Yanchuk, Alvin; Ritland, Carol; Boyle, Brian; Bousquet, Jean; Ritland, Kermit; MacKay, John; Bohlmann, Jörg; Jones, Steven J.M. (2013). "Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data". Bioinformatics. 29 (12): 1492–1497. doi:10.1093/bioinformatics/btt178. PMC 3673215Freely accessible. PMID 23698863. Cite uses deprecated parameter |coauthors= (help)
  110. Zimin, A.; Stevens, K. A.; Crepeau, M. W.; Holtz-Morris, A.; Koriabine, M.; Marcais, G.; Puiu, D.; Roberts, M.; Wegrzyn, J. L.; de Jong, P. J.; Neale, D. B.; Salzberg, S. L.; Yorke, J. A.; Langley, C. H. (2014). "Sequencing and Assembly of the 22-Gb Loblolly Pine Genome". Genetics. 196 (3): 875–890. doi:10.1534/genetics.113.159715. PMC 3948813Freely accessible. PMID 24653210. Cite uses deprecated parameter |coauthors= (help)
  111. Wegrzyn, J. L.; Liechty, J. D.; Stevens, K. A.; Wu, L.-S.; Loopstra, C. A.; Vasquez-Gross, H. A.; Dougherty, W. M.; Lin, B. Y.; Zieve, J. J.; Martinez-Garcia, P. J.; Holt, C.; Yandell, M.; Zimin, A. V.; Yorke, J. A.; Crepeau, M. W.; Puiu, D.; Salzberg, S. L.; de Jong, P. J.; Mockaitis, K.; Main, D.; Langley, C. H.; Neale, D. B. (2014). "Unique Features of the Loblolly Pine (Pinus taeda L.) Megagenome Revealed Through Sequence Annotation". Genetics. 196 (3): 891–909. doi:10.1534/genetics.113.159996. PMC 3948814Freely accessible. PMID 24653211. Cite uses deprecated parameter |coauthors= (help)
  112. Neale, David B; Wegrzyn, Jill L; Stevens, Kristian A; Zimin, Aleksey V; Puiu, Daniela; Crepeau, Marc W; Cardeno, Charis; Koriabine, Maxim; Holtz-Morris, Ann E; Liechty, John D; Martínez-García, Pedro J; Vasquez-Gross, Hans A; Lin, Brian Y; Zieve, Jacob J; Dougherty, William M; Fuentes-Soriano, Sara; Wu, Le-Shin; Gilbert, Don; Marçais, Guillaume; Roberts, Michael; Holt, Carson; Yandell, Mark; Davis, John M; Smith, Katherine E; Dean, Jeffrey FD; Lorenz, W Walter; Whetten, Ross W; Sederoff, Ronald; Wheeler, Nicholas; McGuire, Patrick E; Main, Doreen; Loopstra, Carol A; Mockaitis, Keithanne; deJong, Pieter J; Yorke, James A; Salzberg, Steven L; Langley, Charles H (2014). "Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies". Genome Biology. 15 (3): R59. doi:10.1186/gb-2014-15-3-r59. PMC 4053751Freely accessible. PMID 24647006. Cite uses deprecated parameter |coauthors= (help)
  113. http://www.research-in-germany.de/coremedia/generator/dachportal/en/07__News_20and_20Events/VDITZ_20-_20News_26Events/Archiv/2009-10-25_2C_20Full_20oilseed_20rape_20genome_20deciphered,sourcePageId=34814.html
  114. "First Draft Of Oil Palm Genome Completed". Energy-daily.com. Retrieved 2010-08-27.
  115. "Jute genome decoded : Golden fibre to become healthy, high yielding, weather-tolerant; Hawaii-based Bangladeshi scientist leads team to landmark discovery". The Daily Star.
  116. "Jute genome sequence decoded by Bangladeshi scientists". Hindusthan Times.
  117. "স্বপ্নযাত্রা (Chasing the dream)". Jute Genome Project.
  118. Welcome to the British Ash Tree Genome Project | The British Ash Tree Genome Project -
    The School of Biological & Chemical Sciences
  119. BBC News - Ash genome reveals fungus resistance
This article is issued from Wikipedia - version of the 10/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.