LARES (satellite)

LARES

The aspect of LARES satellite
Mission type Laser ranging satellite
Test of GR[1][2]
Operator ASI
COSPAR ID 2012-006A
SATCAT № 38077
Website http://www.lares-mission.com/
Spacecraft properties
Launch mass 386.8 kilograms (853 lb)
Dimensions 364 millimetres (14.3 in)
Start of mission
Launch date 13 February 2012, 22:45:00 (2012-02-13UTC22:45Z) UTC
Rocket Vega VV01
Launch site Kourou ELA-1
Orbital parameters
Reference system Geocentric
Regime Low Earth
Eccentricity 0.0008[3]
Perigee 1,437 kilometres (893 mi)[3]
Apogee 1,451 kilometres (902 mi)[3]
Inclination 69.49 degrees[3]
Period 114.75 minutes[3]
Epoch 29 July 2013[3]

LARES (acronym for Laser Relativity Satellite) (COSPAR ID 2012-006A) is an Italian Space Agency[4] scientific satellite launched from the ESA Guiana Space Centre of Kourou, French Guiana, by the maiden flight of the European launch vehicle Vega on 13 February 2012.[5][6][7][8]

The LARES satellite is the densest known object orbiting in the Solar System.[1]

Mission

The satellite, completely passive, is made of tungsten alloy and houses 92 cube corner retroreflectors that are used to track the satellite via laser from stations on Earth (satellite laser ranging). LARES's body has a diameter of about 36.4 centimetres (14 in) and weighs about 400 kilograms (882 lb).[9] LARES was inserted in an orbit with 1,450 kilometres (901 mi) of perigee, an inclination of 69.5 degrees and reduced eccentricity. The satellite is tracked by the International Laser Ranging Service stations.[10][11]

Scientific goals

The main scientific target of the LARES mission is the measurement of the Lense–Thirring effect, also known as frame-dragging, with an accuracy of about 1%, according to its proponent, Ignazio Ciufolini (Principal Investigator of the mission), and the LARES Scientific Team.[12][13][14][15][16][17][18][19] The reliability of such an estimate is currently debated.[20][21][22][23][24][25][26][27][28][29] An analysis of 3.5 years of laser-ranging data has been reported with a claimed accuracy of about 4%.[30]

The LARES satellite may also be used for measurements in the fields of geodynamics and satellite geodesy.

See also

References

  1. 1 2 "The LAser RElativity Satellite". The LARES Team. Retrieved 2013-02-28.
  2. "LARES". International Laser Ranging Service. Retrieved 2013-02-28.
  3. 1 2 3 4 5 6 Peat, Chris (29 July 2013). "LARES - Orbit". Heavens-Above. Retrieved July 29, 2013.
  4. "LARES: Satellite per misure relativistiche" (in Italian). Agenzia Spaziale Italiana. Archived from the original on October 15, 2009. Retrieved 2009-03-12.
  5. "Vega Launch Vehicle". European Space Agency.
  6. "Vega overview".
  7. "Prepping satellite to test Albert Einstein".
  8. "Overview of ESA activities in 2012 of interest to media.".
  9. Peroni, I.; et al. (2007). "The Design of LARES: A satellite for testing General Relativity". Proceedings of the 58th International Astronautical Congress. IAC-07-B4.2.07.
  10. "International Laser Ranging Service".
  11. "LARES page on the ILRS Site".
  12. Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J. C.; Koenig R.; Matzner R. A.; Sindoni G. & Neumayer H. (2009). "Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models". Space Science Reviews. 148: 71–104. Bibcode:2009SSRv..148...71C. doi:10.1007/s11214-009-9585-7.
  13. Ciufolini, I.; E. Pavlis; A. Paolozzi; J. Ries; R. Koenig; R. Matzner; G. Sindoni; H. Neumayer (2012). "Phenomenology of the Lense-Thirring effect in the solar system: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003.
  14. Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J. C.; Koenig R.; Matzner R. A.; Sindoni G. & Neumayer H. (2010). "Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models". General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library. 367. SpringerLink. pp. 371–434. doi:10.1007/978-90-481-3735-0_17.
  15. Paolozzi, A.; Ciufolini I.; Vendittozzi C. (2011). "Engineering and scientific aspects of LARES satellite". Acta Astronautica. 69 (3–4): 127–134. Bibcode:2011AcAau..69..127P. doi:10.1016/j.actaastro.2011.03.005. ISSN 0094-5765.
  16. Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J.; Koenig R.; Sindoni G.; Neumeyer H. (2011). "Testing Gravitational Physics with Satellite Laser Ranging". European Physical Journal Plus. 126 (8): 72. Bibcode:2011EPJP..126...72C. doi:10.1140/epjp/i2011-11072-2.
  17. Ciufolini, I.; Pavlis E. C.; Paolozzi A.; Ries J.; Koenig R.; Matzner R.; Sindoni G.; Neumayer K.H. (2011-08-03). "Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003.
  18. Ciufolini, I.; A. Paolozzi; C. Paris (2012). "Overview of the LARES mission: orbit, error analysis and technological aspects.". Journal of Physics. Conference Series. 354: 1–9. Bibcode:2012JPhCS.354a2002C. doi:10.1088/1742-6596/354/1/012002.
  19. Ciufolini, I.; V. G. Gurzadyan; R. Penrose; A. Paolozzi (2012). "Geodesic motion in general relativity: LARES in Earth's gravity.". Low Dimensional Physics and Gauge Principles: 1–4. doi:10.1142/9789814440349_fmatter.
  20. Iorio, L. (2009). "Towards a 1% measurement of the Lense-Thirring effect with LARES?". Advances in Space Research. 43 (7): 1148–1157. arXiv:0802.2031Freely accessible. Bibcode:2009AdSpR..43.1148I. doi:10.1016/j.asr.2008.10.016.
  21. Iorio, L. (2009). "Will the recently approved LARES mission be able to measure the Lense–Thirring effect at 1%?". General Relativity and Gravitation. 41 (8): 1717–1724. arXiv:0803.3278Freely accessible. Bibcode:2009GReGr..41.1717I. doi:10.1007/s10714-008-0742-1.
  22. Iorio, L. (2009). "An Assessment of the Systematic Uncertainty in Present and Future Tests of the Lense-Thirring Effect with Satellite Laser Ranging". Space Science Reviews. 148: 363. arXiv:0809.1373Freely accessible. Bibcode:2009SSRv..148..363I. doi:10.1007/s11214-008-9478-1.
  23. Lorenzo Iorio (2009). "Recent Attempts to Measure the General Relativistic Lense-Thirring Effect with Natural and Artificial Bodies in the Solar System". PoS ISFTG. 017. arXiv:0905.0300Freely accessible. Bibcode:2009isft.confE..17I.
  24. Iorio, L. (2010). "On the impact of the atmospheric drag on the LARES mission" (PDF). Acta Physica Polonica B. 41 (4): 753–765.
  25. Iorio, L.; Lichtenegger, H.I.M.; Ruggiero, M.L.; Corda, C. (2011). "Phenomenology of the Lense-Thirring effect in the solar system". Astrophysics and Space Science. 331 (2): 351. arXiv:1009.3225Freely accessible. Bibcode:2011Ap&SS.331..351I. doi:10.1007/s10509-010-0489-5.
  26. Renzetti, G. (2012). "Are higher degree even zonals really harmful for the LARES/LAGEOS frame-dragging experiment?". Canadian Journal of Physics. 90 (9): 883–888. Bibcode:2012CaJPh..90..883R. doi:10.1139/p2012-081.
  27. Renzetti, G. (October 2013). "First results from LARES: An analysis". New Astronomy. 23-24: 63–66. Bibcode:2013NewA...23...63R. doi:10.1016/j.newast.2013.03.001.
  28. Ciufolini, I.; A. Paolozzi; E. C. Pavlis; J. C. Ries; R. Koenig; R. A. Matzner; G. Sindoni; H. Neumayer (2009). "Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models". Space Science Reviews. 148 (1-4): 71–104. Bibcode:2009SSRv..148...71C. doi:10.1007/s11214-009-9585-7.
  29. Renzetti, G. (May 2015). "On Monte Carlo simulations of the LAser RElativity Satellite experiment". Acta Astronautica. 113: 164–168. Bibcode:2015AcAau.113..164R. doi:10.1016/j.actaastro.2015.04.009.
  30. Ciufolini, I.; A. Paolozzi; E. C. Pavlis; R. Koenig; J. Ries; V. Gurzadyan; R. Matzner; R. Penrose; G. Sindoni; C. Paris; H. Khachatryan; S. Mirzoyan (March 2016). "A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames". The European Physical Journal C. 76: 120. arXiv:1603.09674Freely accessible. Bibcode:2016EPJC...76..120C. doi:10.1140/epjc/s10052-016-3961-8.

External links

This article is issued from Wikipedia - version of the 9/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.