Koszul complex
In mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra.
Definition
Let R be a commutative ring and E a free module of finite rank r over R. We write for the i-th exterior power of E. Then, given an R-linear map , the Koszul complex associated to s is the chain complex of R-modules:
where the differential dk is given by: for any ei in E,
The superscript means the term is omitted. (Showing is straightforward; alternatively, this identity also follows using the #Self-duality of a Koszul complex.)
Note and . Note also ; this isomorphism is not canonical (for example, a choice of a volume form in differential geometry is an example of such an isomorphism.)
If E = Rr (i.e., an ordered basis is chosen), then, giving an R-linear map s: Rr → R amounts to giving a finite sequence s1, ..., sr of elements in R (namely, a row vector) and then one sets
If M is a finitely generated R-module, then one sets:
- ,
which is again a chain complex with the induced differential .
The i-th homology of the Koszul complex
is called the i-th Koszul homology. For example, if E = Rr and is a row vector with entries in R, then is
and so
Similarly,
Explanation
In commutative algebra, if x is an element of the ring R, multiplication by x is R-linear and so represents an R-module homomorphism x:R →R from R to itself. It is useful to throw in zeroes on each end and make this a (free) R-complex:
Call this chain complex K•(x).
Counting the right-hand copy of R as the zeroth degree and the left-hand copy as the first degree, this chain complex neatly captures the most important facts about multiplication by x because its zeroth homology is exactly the homomorphic image of R modulo the multiples of x, H0(K•(x)) = R/xR, and its first homology is exactly the annihilator of x, H1(K•(x)) = AnnR(x).
This chain complex K•(x) is called the Koszul complex of R with respect to x, as in #Definition. For the case of two elements x and y, the Koszul complex can be written down quite succinctly as
with the matrices and given by
- and
Note that di is applied on the left. The cycles in degree 1 are then exactly the linear relations on the elements x and y, while the boundaries are the trivial relations. The first Koszul homology H1(K•(x, y)) therefore measures exactly the relations mod the trivial relations. With more elements the higher-dimensional Koszul homologies measure the higher-level versions of this.
In the case that the elements x1, x2, ..., xn form a regular sequence, the higher homology modules of the Koszul complex are all zero.
Example
If k is a field and X1, X2, ..., Xd are indeterminates and R is the polynomial ring k[X1, X2, ..., Xd], the Koszul complex K•(Xi) on the Xi's forms a concrete free R-resolution of k.
Properties of a Koszul homology
Let E be a finite-rank free module over R, s: E → R an R-linear map and t an element of R. Let be the Koszul complex of . Let M be a finitely generated module over R.
Using , there is the exact sequence of complexes:
where [-1] signifies the degree shift by -1 and . One notes:[1] for (x, y) in ,
(In the language of homological algebra, the above means that is the mapping cone of .)
Taking the long exact sequence of homologies, we get:
Here, the connecting homomorphism
is computed as follows. By definition, where y is an element of that maps to x. Since is a direct sum, we can simply take y to be (0, x). Then the early formula for gives .
The above exact sequence can be used to prove the following.
Theorem — Let R be a ring, M a finitely generated module over R. If a sequence x1, x2, ..., xr of elements of R is a regular sequence on M, then
for all i ≥ 1. In particular, when M = R, this is to say
is exact; i.e., is an R-free resolution of .
Proof by induction on r. If r = 1, then . Next, assume the assertion is true for r - 1. Then, using the above exact sequence, one sees for any i ≥ 2. The vanishing is also valid for i = 1, since is a nonzerodivisor on
Corollary[2] — Let R, M be as above and x1, x2, ..., xn a sequence of elements of R. Suppose there are a ring S, an S-regular sequence y1, y2, ..., yn in S and a ring homomorphism S → R that maps yi to xi. (For example, one can take S = Z[y1, ..., yn].) Then
where Tor denotes the Tor functor and M is an S-module through S → R.
Proof: By the theorem applied to S and S as an S-module, we see K(y1, ..., yn) is an S-free resolution of S/(y1, ..., yn). So, by definition, the i-th homology of is the right-hand side of the above. On the other hand, by the definition of the S-module structure on M.
Corollary[3] — Let R, M be as above and x1, x2, ..., xn a sequence of elements of R. Then both the ideal I = (x1, ..., xn) and the annihilator of M annihilate
for all i.
Proof: Let S = R[y1, ..., yn]. Turn M into an S-module through the ring homomorphism S → R, yi → xi and R an S-module through yi → 0. By the preceding corollary, and then
For a Noetherian local ring, the converse of the theorem holds. More generally,
Theorem — Let R be a Noetherian ring and M a nonzero finitely generated module over R . If x1, x2, ..., xr are elements of the Jacobson radical of R, then the following are equivalent:
- The sequence is a regular sequence on M,
- ,
- for all i ≥ 1.
Proof: We only need to show 2. implies 1., the rest being clear. We argue by induction on r. The case r = 1 is already known. Let x' denote x1, ..., xr-1. Consider
Since the first is surjective, with . By Nakayama's lemma, and so x' is a regular sequence by the inductive hypothesis. Since the second is injective (i.e., is a nonzerodivisor), is a regular sequence. (Note: by Nakayama's lemma, the requirement is automatic.)
Tensor products of Koszul complexes
In general, if C, D are chain complexes, then their tensor product C ⊗ D is the chain complex given by
with the differential: for any homogeneous elements x, y,
where |x| is the degree of x.
This construction applies in particular to Koszul complexes. Let E, F be finite-rank free modules, s: E → R, t: F → R R-linear maps. Let be the Koszul complex of the linear map . Then, as complexes,
To see this, it is more convenient to work with an exterior algebra (as opposed to exterior powers). Define the graded derivation of degree -1
by requiring: for any homogeneous elements x, y in ΛE,
- when
One easily sees that (induction on degree) and that the action of ds on homogeneous elements agrees with the differentials in #Definition.
Now, we have as graded R-modules. Also, by the definition of a tensor product mentioned in the beginning,
Since and are derivations of the same type, this implies
Note, in particular,
- .
The next proposition shows how the Koszul complex of elements encodes some information about sequences in the ideal generated by them.
Proposition — Let R be a ring and I = (x1, ..., xn) an ideal generated by some n-elements. Then, for any R-module M and any elements y1, ..., yr in I,
where is viewed as a complex with zero differential. (In fact, the decomposition holds on the chain-level).
Proof: (Easy but omitted for now)
As an application, we can show the depth-sensitivity of a Koszul homology. Given a finitely generated module M over a ring R, by (one) definition, the depth of M with respect to an ideal I is the supremum of the lengths of all regular sequences of elements of I on M. It is denoted by . Recall that an M-regular sequence x1, ..., xn in an ideal I is maximal if I contains no nonzerodivisor on .
The Koszul homology gives a very useful characterization of a depth.
Theorem (depth-sensitivity) — Let R be a Noetherian ring, x1, ..., xn elements of R and I = (x1, ..., xn) the ideal generated by them. For a finitely generated module M over R, if, for some integer m,
- for all i > m,
while
then every maximal M-regular sequence in I has length n - m (in particular, they all have the same length). As a consequence,
- .
Proof: To lighten the notations, we write H(-) for H(K(-)). Let y1, ..., ys be a maximal M-regular sequence in the ideal I; we denote this sequence by . First we show, by induction on , the claim that is if and is zero if . The basic case is clear from #Properties of a Koszul homology. From the long exact sequence of Koszul homologies and the inductive hypothesis,
- ,
which is Also, by the same argument, the vanishing holds for . This completes the proof of the claim.
Now, it follows from the claim and the early proposition that for all i > n - s. To conclude n - s = m, it remains to show that it is nonzero if i = n - s. Since is a maximal M-regular sequence in I, the ideal I is contained in the set of all zerodivisors on , the finite union of the associated primes of the module. Thus, by prime avoidance, there is some nonzero v in such that , which is to say,
Self-duality
There is an approach to a Koszul complex that uses a cochain complex instead of a chain complex. As it turns out, this results essentially in the same complex (the fact known as the self-duality of a Koszul complex).
Let E be a free module of finite rank r over a ring R. Then each element e of E gives rise to the exterior left-multiplication by e:
Since , we have: ; that is,
is a cochain complex of free modules. This complex, also called a Koszul complex, is a complex used in (Eisenbud 1995). Taking the dual, there is the complex:
- .
Using an isomorphism , the complex coincides with the Koszul complex in #Definition.
Use
The Koszul complex is essential in defining the joint spectrum of a tuple of commuting bounded linear operators in a Banach space.
See also
Notes
References
- David Eisenbud, Commutative Algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol 150, Springer-Verlag, New York, 1995. ISBN 0-387-94268-8
- William Fulton (1998), Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-62046-4, MR 1644323
- Serre, Jean-Pierre (1975), Algèbre locale, Multiplicités, Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel. Troisième édition, 1975. Lecture Notes in Mathematics (in French), 11, Berlin, New York: Springer-Verlag