Iterated integral

In calculus an iterated integral is the result of applying integrals to a function of more than one variable (for example or ) in a way that each of the integrals considers some of the variables as given constants. For example, the function , if is considered a given parameter, can be integrated with respect to , . The result is a function of and therefore its integral can be considered. If this is done, the result is the iterated integral

It is key for the notion of iterated integral that this is different, in principle, from the multiple integral

Although in general these two can be different there is a theorem that, under very mild conditions, gives the equality of the two. This is Fubini's theorem.

The alternative notation for iterated integrals

is also used.

Iterated integrals are computed following the operational order indicated by the parentheses (in the notation that uses them). Starting from the most inner integral outside.

Examples

A simple computation

For the iterated integral

the integral

is computed first and then the result is used to compute the integral with respect to y.

It should be noted, however, that this example omits the constants of integration. After the first integration with respect to x, we would rigorously need to introduce a "constant" function of y. That is, If we were to differentiate this function with respect to x, any terms containing only y would vanish, leaving the original integrand. Similarly for the second integral, we would introduce a "constant" function of x, because we have integrated with respect to y. In this way, indefinite integration does not make very much sense for functions of several variables.

The order is important

The order in which the integrals are computed is important in iterated integrals, particularly when the integrand is not continuous on the domain of integration. Examples in which the different orders lead to different results are usually for complicated functions as the one that follows.

Let a sequence , such that . Let be continuous functions not vanishing in the interval and zero elsewhere, such that for every . Define

In the previous sum, at each specific , at most one term is different from zero. For this function it happens that

[1]

References

  1. Rudin, W., Real and complex analysis, 1970
This article is issued from Wikipedia - version of the 8/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.