Ideal quotient

In abstract algebra, if I and J are ideals of a commutative ring R, their ideal quotient (I : J) is the set

Then (I : J) is itself an ideal in R. The ideal quotient is viewed as a quotient because if and only if . The ideal quotient is useful for calculating primary decompositions. It also arises in the description of the set difference in algebraic geometry (see below).

(I : J) is sometimes referred to as a colon ideal because of the notation. In the context of fractional ideals, there is a related notion of the inverse of a fractional ideal.

Properties

The ideal quotient satisfies the following properties:

Calculating the quotient

The above properties can be used to calculate the quotient of ideals in a polynomial ring given their generators. For example, if I = (f1, f2, f3) and J = (g1, g2) are ideals in k[x1, ..., xn], then

Then elimination theory can be used to calculate the intersection of I with (g1) and (g2):

Calculate a Gröbner basis for tI + (1-t)(g1) with respect to lexicographic order. Then the basis functions which have no t in them generate .

Geometric interpretation

The ideal quotient corresponds to set difference in algebraic geometry.[1] More precisely,

where denotes the taking of the ideal associated to a subset.

where denotes the Zariski closure, and denotes the taking of the variety defined by an ideal. If I is not radical, then the same property holds if we saturate the ideal J:

where .

References

  1. David Cox; John Little; Donal O'Shea (1997). Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer. ISBN 0-387-94680-2., p.195

Viviana Ene, Jürgen Herzog: 'Gröbner Bases in Commutative Algebra', AMS Graduate Studies in Mathematics, Vol 130 (AMS 2012)

M.F.Atiyah, I.G.MacDonald: 'Introduction to Commutative Algebra', Addison-Wesley 1969.

This article is issued from Wikipedia - version of the 9/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.