Guillaume de l'Hôpital

Guillaume de l'Hôpital
Born 1661
Paris, France
Died 2 February 1704
Paris, France
Nationality French
Fields Mathematician
Institutions French academy of sciences
Academic advisors Johann Bernoulli
Known for

Guillaume François Antoine, Marquis de l'Hôpital[1] (French: [ɡijom fʁɑ̃swa ɑ̃twan maʁki də lopital]; 1661 – 2 February 1704) was a French mathematician. His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞. Although the rule did not originate with l'Hôpital, it appeared in print for the first time in his treatise on the infinitesimal calculus, entitled Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes.[2] This book was a first systematic exposition of differential calculus. Several editions and translations to other languages were published and it became a model for subsequent treatments of calculus.

Biography

L'Hôpital was born into a military family. His father was Anne-Alexandre de l'Hôpital, a Lieutenant-General of the King's army, Comte de Saint-Mesme and the first squire of Gaston, Duke of Orléans. His mother was Elisabeth Gobelin, a daughter of Claude Gobelin, Intendant in the King's Army and Councilor of the State.

L'Hôpital abandoned a military career due to poor eyesight and pursued his interest in mathematics, which was apparent since his childhood. For a while, he was a member of Nicolas Malebranche's circle in Paris and it was there that in 1691 he met young Johann Bernoulli, who was visiting France and agreed to supplement his Paris talks on infinitesimal calculus with private lectures to l'Hôpital at his estate at Oucques. In 1693, l'Hôpital was elected to the French academy of sciences and even served twice as its vice-president.[3] Among his accomplishments were the determination of the arc length of the logarithmic graph,[4] one of the solutions to the brachistochrone problem, and the discovery of a turning point singularity on the involute of a plane curve near an inflection point.[5]

L'Hôpital exchanged ideas with Pierre Varignon and corresponded with Gottfried Leibniz, Christiaan Huygens, and Jacob and Johann Bernoulli. His Traité analytique des sections coniques et de leur usage pour la résolution des équations dans les problêmes tant déterminés qu'indéterminés ("Analytic treatise on conic sections") was published posthumously in Paris in 1707.

Calculus textbook

In 1696 l'Hôpital published his book Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes ("Infinitesimal calculus with applications to curved lines"). This was the first textbook on infinitesimal calculus and it presented the ideas of differential calculus and their applications to differential geometry of curves in a lucid form and with numerous figures; however, it did not consider integration. The history leading to the book's publication became a subject of a protracted controversy. In a letter from 17 March 1694, l'Hôpital made the following proposal to Johann Bernoulli: in exchange for an annual payment of 300 Francs, Bernoulli would inform L'Hôpital of his latest mathematical discoveries, withholding them from correspondence with others, including Varignon. Bernoulli's immediate response has not been preserved, but he must have agreed soon, as the subsequent letters show. L'Hôpital may have felt fully justified in describing these results in his book, after acknowledging his debt to Leibniz and the Bernoulli brothers, "especially the younger one" (Johann). Johann Bernoulli grew increasingly unhappy with the accolades bestowed on l'Hôpital's work and complained in private correspondence about being sidelined. After l'Hôpital's death, he publicly revealed their agreement and claimed credit for the statements and portions of the text of Analyse, which were supplied to l'Hôpital in letters. Over a period of many years, Bernoulli made progressively stronger allegations about his role in the writing of Analyse, culminating in the publication of his old work on integral calculus in 1742: he remarked that this is a continuation of his old lectures on differential calculus, which he discarded since l'Hôpital had already included them in his famous book. For a long time, these claims were not regarded as credible by many historians of mathematics, because l'Hôpital's mathematical talent was not in doubt, while Bernoulli was involved in several other priority disputes. For example, both H. G. Zeuthen and Moritz Cantor, writing at the cusp of the 20th century, dismissed Bernoulli's claims on these grounds. However, in 1921 Paul Schafheitlin discovered a manuscript of Bernoulli's lectures on differential calculus from 1691–1692 in the Basel University library. The text showed remarkable similarities to l'Hôpital's writing, substantiating Bernoulli's account of the book's origin.

L'Hôpital's pedagogical brilliance in arranging and presenting the material remains universally recognized. Regardless of the exact authorship (one should also note that the book was first published anonymously), Analyse was remarkably successful in popularizing the ideas of differential calculus stemming from Leibniz.

Notes

  1. In the 17th and 18th centuries, the name was commonly spelled "l'Hospital", and he himself spelled his name that way. However, French spellings have been altered: the silent 's' has been removed and replaced with the circumflex over the preceding vowel. The former spelling is still used in English where there is no circumflex.
  2. Answering l'Hôpital's question, in a letter of 22 July 1694 Johann Bernoulli described the rule of computing the limit of a fraction whose numerator and denominator tend to 0 by differentiating the numerator and denominator. A commonly made claim that l'Hôpital attempted to get credit for discovering the l'Hôpital's rule is inaccurate, since in the preface to his textbook, l'Hôpital generally acknowledged Leibniz, Jakob Bernoulli and Johann Bernoulli as the sources of the results in it.
  3. Yushkevich, p. 270.
  4. Unbeknownst to him, a solution had already been obtained by James Gregory in letters to Collins (1670–1671), ibid.
  5. This singularity is a cusp of the second kind, in which both branches are concave from the same side. It was described in l'Hôpital's letter to Johann Bernoulli from May 1694, Yushkevich, p. 275.

References

External links

This article is issued from Wikipedia - version of the 11/5/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.