Friedlander–Iwaniec theorem

John Friedlander
Henryk Iwaniec

In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form . The first few such primes are

2, 5, 17, 37, 41, 97, 101, 137, 181, 197, 241, 257, 277, 281, 337, 401, 457, 577, 617, 641, 661, 677, 757, 769, 821, 857, 881, 977, … (sequence A028916 in the OEIS).

The difficulty in this statement lies in the very sparse nature of this sequence: the number of integers of the form less than is roughly of the order .

History

The theorem was proved in 1997 by John Friedlander and Henryk Iwaniec.[1] Iwaniec was awarded the 2001 Ostrowski Prize in part for his contributions to this work.[2]

Special case

When b = 1, the Friedlander–Iwaniec primes have the form , forming the set

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377, … (sequence A002496 in the OEIS).

It is conjectured (one of Landau's problems) that this set is infinite. However, this is not implied by the Friedlander–Iwaniec theorem.

References

  1. Friedlander, John; Iwaniec, Henryk (1997), "Using a parity-sensitive sieve to count prime values of a  polynomial", PNAS, 94 (4): 1054–1058, doi:10.1073/pnas.94.4.1054, PMC 19742Freely accessible, PMID 11038598.
  2. "Iwaniec, Sarnak, and Taylor Receive Ostrowski Prize"

Further reading

This article is issued from Wikipedia - version of the 10/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.