Force field (physics)

For other uses, see Force field (disambiguation).
Plot of a two-dimensional slice of the gravitational potential in and around a uniform spherical body. The inflection points of the cross-section are at the surface of the body.

In physics a force field is a vector field that describes a non-contact force acting on a particle at various positions in space. Specifically, a force field is a vector field , where is the force that a particle would feel if it were at the point .[1]

Examples of force fields

Restriction to position-dependent forces

Some forces, including friction, air drag, and the magnetic force on a charged particle, depend on the particle's velocity as well as its position. Therefore these forces are not characterized by a force field.

Work done by a force field

As a particle moves through a force field along a path C, the work done by the force is a line integral

This value is independent of the velocity/momentum that the particle travels along the path. For a conservative force field, it is also independent of the path itself, but depends only on the starting and ending points. Therefore, if the starting and ending points are the same, the work is zero for a conservative field:

If the field is conservative, the work done can be more easily evaluated by realizing that a conservative vector field can be written as the gradient of some scalar potential function:

The work done is then simply the difference in the value of this potential in the starting and end points of the path. If these points are given by x = a and x = b, respectively:

See also

References

This article is issued from Wikipedia - version of the 10/15/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.