Effective domain
In convex analysis, a branch of mathematics, the effective domain is an extension of the domain of a function.
Given a vector space X then a convex function mapping to the extended reals, , has an effective domain defined by
If the function is concave, then the effective domain is
The effective domain is equivalent to the projection of the epigraph of a function onto X. That is
Note that if a convex function is mapping to the normal real number line given by then the effective domain is the same as the normal definition of the domain.
A function is a proper convex function if and only if f is convex, the effective domain of f is nonempty and for every .[3]
References
- 1 2 Aliprantis, C.D.; Border, K.C. (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. p. 254. doi:10.1007/3-540-29587-9. ISBN 978-3-540-32696-0.
- ↑ Föllmer, Hans; Schied, Alexander (2004). Stochastic finance: an introduction in discrete time (2 ed.). Walter de Gruyter. p. 400. ISBN 978-3-11-018346-7.
- 1 2 Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. p. 23. ISBN 978-0-691-01586-6.
This article is issued from Wikipedia - version of the 8/22/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.