Caloric polynomial
In differential equations, the mth-degree caloric polynomial (or heat polynomial) is a "parabolically m-homogeneous" polynomial Pm(x, t) that satisfies the heat equation
"Parabolically m-homogeneous" means
The polynomial is given by
It is unique up to a factor.
With t = −1, this polynomial reduces to the mth-degree Hermite polynomial in x.
References
- Cannon, John Rozier (1984), The One-Dimensional Heat Equation, Encyclopedia of Mathematics and Its Applications, 23 (1st ed.), Reading/Cambridge: Addison-Wesley Publishing Company/Cambridge University Press, pp. XXV+483, ISBN 978-0-521-30243-2, MR 0747979, Zbl 0567.35001. Contains an extensive bibliography on various topics related to the heat equation.
External links
This article is issued from Wikipedia - version of the 9/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.