Beauville surface

In mathematics, a Beauville surface is one of the surfaces of general type introduced by Beauville (1996, exercise X.13 (4)). They are examples of "fake quadrics", with the same Betti numbers as quadric surfaces.

Construction

Let C1 and C2 be smooth curves with genera g1 and g2. Let G be a finite group acting on C1 and C2 such that

Then the quotient (C1 × C2)/G is a Beauville surface.

One example is to take C1 and C2 both copies of the genus 6 quintic X5 + Y5 + Z5 =0, and G to be an elementary abelian group of order 25, with suitable actions on the two curves.

Invariants

Hodge diamond:

1
0 0
0 2 0
0 0
1

References

This article is issued from Wikipedia - version of the 10/23/2014. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.