Antilinear map
In mathematics, a mapping from a complex vector space to another is said to be antilinear (or conjugate-linear) if
for all and all , where and are the complex conjugates of and respectively. The composition of two antilinear maps is complex-linear. The class of semilinear maps generalizes the class of antilinear maps.
An antilinear map may be equivalently described in terms of the linear map from to the complex conjugate vector space .
Antilinear maps occur in quantum mechanics in the study of time reversal and in spinor calculus, where it is customary to replace the bars over the basis vectors and the components of geometric objects by dots put above the indices.
References
- Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
- Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
See also
This article is issued from Wikipedia - version of the 8/3/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.