Caryophyllene
Names | |
---|---|
IUPAC name
4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene | |
Other names
β-Caryophyllene; trans-(1R,9S)-8-Methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene | |
Identifiers | |
87-44-5 | |
3D model (Jmol) | Interactive image |
ChEBI | CHEBI:10357 |
ChEMBL | ChEMBL445740 |
ChemSpider | 4444848 |
ECHA InfoCard | 100.001.588 |
PubChem | 5281515 |
UNII | BHW853AU9H |
| |
| |
Properties | |
C15H24 | |
Molar mass | 204.36 g·mol−1 |
Density | 0.9052 g/cm3 (17 °C)[1] |
Boiling point | 254–257 °C (489–495 °F; 527–530 K)[2] |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Caryophyllene /ˌkærioʊfɪˈliːn/, or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils, especially clove oil, the oil from the stems and flowers of Syzygium aromaticum (cloves),[3] the essential oil of Cannabis sativa,[4] rosemary,[5] and hops.[6] It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. Caryophyllene is notable for having a cyclobutane ring, as well as a trans-double bond in an 8-membered ring, both rarities in nature.
The first total synthesis of caryophyllene in 1964 by E.J. Corey was considered one of the classic demonstrations of the possibilities of synthetic organic chemistry at the time.[7]
Caryophyllene is one of the chemical compounds that contributes to the spiciness of black pepper.
Metabolism and derivatives
14-Hydroxycaryophyllene oxide (C15H24O2) was isolated from the urine of rabbits treated with (-)-caryophyllene (C15H24). The x-ray crystal structure of 14-hydroxycaryophyllene (as its acetate derivative) has been reported.
The metabolism of caryophyllen progresses through (-)-caryophyllene oxide (C15H24O) since the latter compound also afforded 14-hydroxycaryophyllene (C15H24O) as a metabolite.[8]
- Caryophyllene (C15H24) → caryophyllene oxide (C15H24O) → 14-hydroxycaryophyllene (C15H24O) → 14-hydroxycaryophyllene oxide (C15H24O2).
Caryophyllene oxide,[9] in which the olefin of caryophyllene has become an epoxide, is the component responsible for cannabis identification by drug-sniffing dogs[10][11] and is also an approved food flavoring.[12]
Natural sources
The approximate quantity of caryophyllene in the essential oil of each source is given in square brackets ([ ]):
- Cannabis, hemp, marijuana (Cannabis sativa)[4] [3.8–37.5% of cannabis flower essential oil][13]
- Black caraway (Carum nigrum) [7.8%][14]
- Cloves (Syzygium aromaticum)[3] [1.7%-19,5% of clove bud essential oil][15][16]
- Hops (Humulus lupulus)[17] [5.1–14.5%][18]
- Basil (Ocimum spp.)[19] [5.3–10.5% O. gratissimum; 4.0–19.8% O. micranthum][20]
- Oregano (Origanum vulgare)[21] [4.9%-15.7][22][23]
- Black pepper (Piper nigrum) [7.29%][24]
- Lavender (Lavandula angustifolia) [4.62% of lavender oil][25]
- Rosemary (Rosmarinus officinalis)[5] [0.1–8.3%][26]
- True cinnamon (Cinnamomum zeylanicum) [6.9–11.1%][27]
- Malabathrum (Cinnamomum tamala) [25.3%][28]
- Ylang-ylang (Cananga odorata) [3.1%-10.7%]
- Copaiba oil (Copaifera spp.)[29][30][31][32]
Potential pharmacology
Caryophyllene was shown to be selective agonist of cannabinoid receptor type-2 (CB2) and to exert significant cannabimimetic antiinflammatory effects in mice.[4] Antinociceptive,[33] neuroprotective,[34] anxiolytic and antidepressant [35] and anti-alcoholism [36] activity in in vitro studies and in rodent models have been reported. Whether this compound is able to modulate inflammatory processes in humans via the endocannabinoid system is yet unknown. However, it is found to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors in rats.[37] Caryophyllene does not bind to the centrally expressed cannabinoid receptor type-1 (CB1) and therefore does not exert psychoactive effects. However, phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus) are found. Scientific evidence have been presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC (C21H30O2), that could increase its therapeutic index.[38]
Compendial status
Notes and references
- ↑ SciFinder Record, CAS Registry Number 87-44-5
- ↑ Baker, Richard R. (2004). "The pyrolysis of tobacco ingredients". Journal of Analytical and Applied Pyrolysis. 71 (1): 223–311. doi:10.1016/s0165-2370(03)00090-1.
- 1 2 Ghelardini C, Galeotti N, Di Cesare Mannelli L, Mazzanti G, Bartolini A (2001). "Local anaesthetic activity of beta-caryophyllene". Farmaco. 56 (5–7): 387–9. doi:10.1016/S0014-827X(01)01092-8. PMID 11482764.
- 1 2 3 Gertsch J, Leonti M, Raduner S, et al. (July 2008). "Beta-caryophyllene is a dietary cannabinoid". Proceedings of the National Academy of Sciences of the United States of America. 105 (26): 9099–104. doi:10.1073/pnas.0803601105. PMC 2449371. PMID 18574142.
- 1 2 Ormeño E, Baldy V, Ballini C, Fernandez C (September 2008). "Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients". J. Chem. Ecol. 34 (9): 1219–29. doi:10.1007/s10886-008-9515-2. PMID 18670820.
- ↑ Glenn Tinseth, "Hop Aroma and Flavor", January/February 1993, Brewing Techniques. <http://realbeer.com/hops/aroma.html> Accessed July 21, 2010.
- ↑ Corey EJ, Mitra RB, Uda H (1964). "Total Synthesis of d,l-Caryophyllene and d,l-Isocaryophyllene". Journal of the American Chemical Society. 86 (3): 485–492. doi:10.1021/ja01057a040.
- ↑ Pubchem. "Caryophyllene oxide | C15H24O - PubChem". pubchem.ncbi.nlm.nih.gov. Retrieved 2016-09-08.
- ↑ Yang, D.; Michel, L.; Chaumont, J. P.; Millet-Clerc, J. (1999-11-01). "Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis". Mycopathologia. 148 (2): 79–82. ISSN 0301-486X. PMID 11189747.
- ↑ Ethan (2011). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects". Br J Pharmacol. 163 (7): 1344–1364. doi:10.1111/j.1476-5381.2011.01238.x. PMC 3165946. PMID 21749363.
- ↑ Stahl, E; Kunde, R (1973). "Die Leitsubstanzen der Haschisch-Suchhunde". Kriminalistik: Z Gesamte Kriminal Wiss Prax. 27: 385–389.
- ↑ http://www.thegoodscentscompany.com/data/rw1023631.html
- ↑ Mediavilla, Vito; Simon Steinemann. "Essential oil of Cannabis sativa L. strains". International Hemp Association. Retrieved 11 July 2008.
- ↑ Singh G, Marimuthu P, de Heluani CS, Catalan CA (January 2006). "Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components". J. Agric. Food Chem. 54 (1): 174–81. doi:10.1021/jf0518610. PMID 16390196.
- ↑ Alma, M. Hakkı; Ertaş, Murat; Nitz, Siegfrie; Kollmannsberger, Hubert (May 2007). Lucia, Lucian A.; Hubbe, Martin A., eds. "Chemical composition and content of essential oil from the bud of cultivated Turkish clove" (PDF). BioResources. Raleigh, North Carolina, USA: North Carolina State University. 2 (2): 265–269. ISSN 1930-2126. Retrieved September 6, 2010.
The results showed that the essential oils mainly contained about [...] 3.56% β-Caryophyllene
- ↑ Clove Essential Oil
- ↑ Wang G, Tian L, Aziz N, et al. (November 2008). "Terpene Biosynthesis in Glandular Trichomes of Hop". Plant Physiol. 148 (3): 1254–66. doi:10.1104/pp.108.125187. PMC 2577278. PMID 18775972.
- ↑ Bernotienë, Genovaitë; Nivinskienë, Ona; Butkienë, Rita; Mockutë, Danutë (2004). "Chemical composition of essential oils of hops (Humulus lupulus L.) growing wild in Auktaitija" (PDF). Chemija. 2. Vilnius, Lithuania: Lithuanian Academy of Sciences. 4: 31–36. ISSN 0235-7216. Retrieved September 6, 2010.
- ↑ Zheljazkov VD, Cantrell CL, Tekwani B, Khan SI (January 2008). "Content, composition, and bioactivity of the essential oils of three basil genotypes as a function of harvesting". J. Agric. Food Chem. 56 (2): 380–5. doi:10.1021/jf0725629. PMID 18095647.
- ↑ Silva, Maria Goretti de Vasconcelos; Matos, Francisco José de Abreu; Lopes, Paulo Roberto Oliveira; Silva, Fábio Oliveira; Holanda, Márcio Tavares (August 2, 2004). Cragg, Gordon M.; Bolzani, Vanderlan S.; Rao, G. S. R. Subba, eds. "Composition of essential oils from three Ocimum species obtained by steam and microwave distillation and supercritical CO2 extraction" (PDF). Arkivoc. ARKAT USA, Inc. 2004 (vi): 66–71. doi:10.3998/ark.5550190.0005.609. ISSN 1424-6376. Retrieved September 6, 2010.
- ↑ Harvala C, Menounos P, Argyriadou N (February 1987). "Essential Oil from Origanum dictamnus". Planta Med. 53 (1): 107–9. doi:10.1055/s-2006-962640. PMID 17268981.
- ↑ Calvo-Irabien, L. M.; Yam-Puc, J. A.; Dzib, G.; Escalante-Erosa, F.; Peña-Rodriguez, L. M. (July 2009). "Effect of Postharvest Drying on the Composition of Mexican Oregano (Lippia graveolens) Essential Oil". Journal of Herbs, Spices & Medicinal Plants. London, UK: Taylor & Francis. 15 (3): 281–287. doi:10.1080/10496470903379001. ISSN 1540-3580.
- ↑ The essential oil of Origanum vulgare L. ssp. vulgare growing wild in vilnius district (Lithuania) Phytochemistry. 2001 May;57(1):65-9.
- ↑ Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M (November 2002). "Aroma compound analysis of Piper nigrum and Piper guineense essential oils from Cameroon using solid-phase microextraction-gas chromatography, solid-phase microextraction-gas chromatography-mass spectrometry and olfactometry". J Chromatogr A. 976 (1–2): 265–75. doi:10.1016/S0021-9673(02)00376-X. PMID 12462618.
- ↑ A. Prashar, I. C. Locke, C. S. Evans (2004). Cytotoxicity of lavender oil and its major components to human skin cells. Cell Proliferation 37 (3), 221–229.
- ↑ Jamshidi, R.; Afzali, Z.; Afzali, D. (February 2009). "Chemical Composition of Hydrodistillation Essential Oil of Rosemary in Different Origins in Iran and Comparison with Other Countries" (PDF). American-Eurasian Journal of Agricultural & Environmental Sciences. Pakistan: IDOSI Publications. 5 (1): 78–81. ISSN 1990-4053. Retrieved September 6, 2010.
- ↑ Kaul PN, Bhattacharya AK, Rao BR, et al. (2003). "Volatile constituents of essential oils isolated from different parts of cinnamon (Cinnamomum zeylanicum Blume)". Journal of the Science of Food and Agriculture. 83 (1): 53–55. doi:10.1002/jsfa.1277.
- ↑ Ahmed A, Choudhary MI, Farooq A, et al. (2000). "Essential oil constituents of the spice Cinnamomum tamala (Ham.) Nees & Eberm.". Flavour and Fragrance Journal. 15 (6): 388–390. doi:10.1002/1099-1026(200011/12)15:6<388::AID-FFJ928>3.0.CO;2-F.
- ↑ "Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins.". Molecules. 17 (4): 3866–89. 2012. doi:10.3390/molecules17043866. PMID 22466849.
- ↑ "Validation of a gas chromatographic method to quantify sesquiterpenes in copaiba oils.". J Pharm Biomed Anal. 54 (4): 653–9. Mar 2011. doi:10.1016/j.jpba.2010.10.006. PMID 21095089.
- ↑ http://staff.najah.edu/sites/default/files/Within_plant_distribution_and_emission_of_sesquiterpenes_from_Copaifera_officinalis.pdf
- ↑ http://www.rain-tree.com/copaiba.htm
- ↑ Katsuyama S.; Mizoguchi H.; Kuwahata H.; et al. (2013). "Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception". European journal of pain. 17 (5): 664–675. doi:10.1002/j.1532-2149.2012.00242.x.
- ↑ Guimarães-Santos, Adriano (2012). "Copaiba Oil-Resin Treatment Is Neuroprotective and Reduces Neutrophil Recruitment and Microglia Activation after Motor Cortex Excitotoxic Injury". Evidence-Based Complementary and Alternative Medicine. 2012: 1–9. doi:10.1155/2012/918174. PMC 3291111. PMID 22461843.
- ↑ Bahi Amine; Al Mansouri Shamma; Al Memari Elyazia; Al Ameri Mouza; Nurulain Syed M.; Ojha Shreesh (2014). "β-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice". Physiology & Behavior. 135: 119–124. doi:10.1016/j.physbeh.2014.06.003.
- ↑ Al Mansouri Shamma; Ojha Shreesh; Al Maamari Elyazia; Al Ameri Mouza; Nurulain Syed M.; Bahi Amine (2014). "The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice". Pharmacology, biochemistry, and behavior. 2014;124C:260-268. 124: 260–268. doi:10.1016/j.pbb.2014.06.025.
- ↑ Javed, Hayate; Azimullah, Sheikh; Haque, M. Emdadul; Ojha, Shreesh K. (2016-08-02). "Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease". Frontiers in Neuroscience. 10. doi:10.3389/fnins.2016.00321. ISSN 1662-4548. PMC 4969295. PMID 27531971.
- ↑ Russo, Ethan B (2011-08-01). "Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects". British Journal of Pharmacology. 163 (7): 1344–1364. doi:10.1111/j.1476-5381.2011.01238.x. ISSN 0007-1188. PMC 3165946. PMID 21749363.
- ↑ The United States Pharmacopeial Convention. "Revisions to FCC, First Supplement". Archived from the original on 5 July 2010. Retrieved 29 June 2009.
- ↑ Therapeutic Goods Administration. "Chemical substances" (PDF). Retrieved 29 June 2009.